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Synopsis  
 

The subject of this dissertation is the study of concepts and principles of 

Remote Sensing focusing on the analysis and processing of Hyperspectral Images. 

Hyperspectral imaging as a tool for monitoring, detection and classification of 

objects and areas on Earth can be used in a wide range of applications. Especially in 

the case of monitoring environmental and climatic changes, hyperspectral imaging 

can provide plenty of information in order to create an environmental database 

develop models and prevent possible natural disasters. 
 

Based on this framework and using Matlab software tool a processing system 

was proposed and developed. The procedure of processing raw hyperspectral data is 

described and a classification system is developed. This system uses classification 

algorithms in order to distinguish areas with vegetation, water resources, dry soil or 

man-made constructions using hyperspectral images from a remote sensor. Four 

supervised classification algorithms were developed and evaluated: Euclidean 

Minimum Distance, Mahalanobis Minimum Distance, Bayesian Classification and 

Maximum Likelihood approximation. The algorithms were applied on a satellite 

hyperspectral image of an area. Results have shown that the fastest algorithm is the 

Euclidean distance giving relatively accurate results. Weaknesses in the performance 

of the Mahalanobis distance algorithm were reveled in case of insufficient training 

sets. Bayesian Classification algorithm performed exceptionally well. However the 

best performance as far as accuracy is concerned were provided by the proposed 

approximation of the Maximum Likelihood Distance Algorithm, which also reaches 

satisfactory performance without the need of a long iterative process. 
 

During the study the spectral signatures for the defined classes were 

estimated. Comparison with existing studies has shown that the estimates are 

representative of the area under investigation confirming the integrity of the 

proposed procedure. 
 

The dissertation is partitioned in two sections. Chapters 2, 3, 4 and 5 provide the 

necessary background and state of the art in the subjects of remote sensing and 

Hyperspectral Imaging, while chapters 6, 7 and 8 present the classification 

algorithms, the implemented processing system, the results and conclusions. The 

Matlab code with necessary clarifications and explanations is also provided in the 

Appendix. 

 

Scientific area: a satellite hyperspectral image of an area 

Keywords: Hyperspectral imaging, Matlab, Euclidean Minimum Distance, Mahalanobis 

Minimum Distance, Bayesian Classification, Maximum Likelihood approximation, spectral 

signatures 

 



 
 

Σύνοψη 
Το αντικείμενο της παρούσας διατριβής είναι η μελέτη των εννοιών και των 

αρχών της Τηλεπισκόπησης με επίκεντρο την ανάλυση και επεξεργασία των 

Υπερφασματικών Εικόνων. Η υπερφασματική απεικόνιση ως εργαλείο 

παρακολούθησης, ανίχνευσης και ταξινόμησης αντικειμένων και περιοχών στη Γη 

μπορεί να χρησιμοποιηθεί σε ένα ευρύ φάσμα εφαρμογών. Ειδικά στην περίπτωση 

παρακολούθησης περιβαλλοντικών και κλιματικών αλλαγών, η υπερφασματική 

απεικόνιση μπορεί να παρέχει πολλές πληροφορίες για τη δημιουργία μιας 

περιβαλλοντικής βάσης δεδομένων για την ανάπτυξη μοντέλων και την πρόληψη 

πιθανών φυσικών καταστροφών. 

Με βάση αυτό το πλαίσιο και με τη χρήση του εργαλείου λογισμικού Matlab 

προτάθηκε και αναπτύχθηκε ένα σύστημα επεξεργασίας. Περιγράφεται η διαδικασία 

επεξεργασίας ακατέργαστων υπερφασματικών δεδομένων και αναπτύσσεται ένα 

σύστημα ταξινόμησης. Αυτό το σύστημα χρησιμοποιεί αλγόριθμους ταξινόμησης για 

να διακρίνει περιοχές με βλάστηση, υδάτινους πόρους, ξηρό έδαφος ή τεχνητές 

κατασκευές χρησιμοποιώντας υπερφασματικές εικόνες από έναν απομακρυσμένο 

αισθητήρα. Καταρτίστηκαν και αξιολογήθηκαν τέσσερις αλγόριθμοι 

κατηγοριοποίησης: Euclidean Minimum Distance, Mahalanobis Minimum Distance, 

Bayesian Classification and Maximum Likelihood approximation. Οι αλγόριθμοι 

εφαρμόστηκαν σε μια δορυφορική υπερφασματική εικόνα μιας περιοχής. Τα 

αποτελέσματα έχουν δείξει ότι ο γρηγορότερος αλγόριθμος είναι o Euclidean 

distance που δίνει σχετικά ακριβή αποτελέσματα. Οι αδυναμίες στην εκτέλεση του 

αλγορίθμου απόστασης Mahalanobis αποκαλύφθηκαν σε περίπτωση ανεπαρκών 

ομάδων εκπαίδευσης. Ο αλγόριθμος Bayesian Classification πραγματοποιήθηκε 

εξαιρετικά καλά. Ωστόσο, η βέλτιστη απόδοση όσον αφορά την ακρίβεια παρέχεται 

από την προτεινόμενη προσέγγιση του Αλγόριθμου μέγιστης απόστασης (Maximum 

Likelihood Distance Algorithm), o οποίος επίσης επιτυγχάνει ικανοποιητικές 

επιδόσεις χωρίς την ανάγκη μιας μακράς επαναληπτικής διαδικασίας. 

Κατά τη διάρκεια της μελέτης εκτιμήθηκαν οι φασματικές υπογραφές 

(spectral signatures) για τις καθορισμένες κατηγορίες. Από τη σύγκριση με τις 

υπάρχουσες μελέτες προέκυψε ότι οι εκτιμήσεις είναι αντιπροσωπευτικές της υπό 

έρευνα περιοχής που επιβεβαιώνει την ακεραιότητα της προτεινόμενης διαδικασίας. 

Η διατριβή χωρίζεται σε δύο ενότητες. Τα κεφάλαια 2, 3, 4 και 5 παρέχουν 

το απαραίτητο υπόβαθρο και την τεχνολογία στα θέματα της τηλεπισκόπησης και 

της υπερφασματικής απεικόνισης, ενώ στα κεφάλαια 6, 7 και 8 παρουσιάζονται οι 

αλγόριθμοι ταξινόμησης, το εφαρμοσμένο σύστημα επεξεργασίας, τα αποτελέσματα 

και τα συμπεράσματα. Ο κώδικας Matlab με τις απαραίτητες διευκρινίσεις και 

επεξηγήσεις παρέχεται επίσης στο προσάρτημα. 
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1.  Introduction  
 

Remote sensing is the procedure of data collection and information acquisition about 

an object, an area or a phenomenon without making physical contact. It has become a 

very important tool in many research activities for many scientific fields. However 

the term remote sensing is usually used to describe the process of monitoring, 

detecting and classifying objects and areas on Earth (on the surface, in the 

atmosphere or in the sea) 
 

A Remote Sensing system accomplishes its objective with the use of an array of 

sensors that measure the reflected or emitted electromagnetic radiation from target 

areas/objects of Earth. The information recorded is processed and the results of the 

analysis are used for decision making about the condition, evolution or possible 

variations of the monitored area/object. Thus Remote Sensing is actually an 

application of Spectroscopy, the study of the interaction of incident radiation on an 

object. In most of the cases the radiation source is the Sun and the Earth itself. 
 

Hyper-spectral imaging and the development of hyper-spectral sensors caused the 

most important breakthrough in remote sensing. Moreover the progress in computer 

processors allowed the development of fast and efficient algorithms for processing 

hyper-spectral data. Hyper-spectral imaging can be defined as the acquisition of an 

object image by analyzing the received radiation in a large frequency range and for a 

great number of distinct wavelengths. Hyper-spectral Images are a relatively new 

technology and they are mainly used for detection and identification of minerals, 

vegetation, resources and features of the surface or the oceanic environment. 

Depending on the spectral band analyzed by the sensor, the bandwidth resolution, the 

noise level and other parameters researchers can have a detailed and accurate view of 

an area of the Earth with the use of data acquired from e.g. a satellite. 
 

In order to be able to monitor areas and phenomena, detect objects and materials it is 

necessary to develop classification algorithms that will allow the researchers to 

extract information, track variations and prevent disturbing or catastrophic 

phenomena. Classic classification algorithms of pattern recognition can be applied to 

hyper-spectral data: Minimum Distance, Maximum Likelihood, Bayes, Spectral 

Angle mapper etc. 
 

The benefits of the use of hyper-spectral images in remote sensing are quite obvious. 

They can be extremely useful in mineralogy and geology and they can be an 
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excellent tool for mapping environmental changes and phenomena. Climate changes 

can be observed by mapping vegetation, measuring moisture or the range of barren 

soils, monitoring the water resources etc. Human intervention in the environment can 

also be quantified. Therefore Hyper-spectral Images can be used to detect 

environmental changes and prevent phenomena that can damage the balances of an 

ecosystem. 
 

The main objective of this dissertation is the study of remote sensing and hyper-

spectral images and the development of classification algorithms for monitoring a 

location from a satellite image. By processing a hyper-spectral image, the task is to 

identify areas with or without vegetation, human intervention or water resources. The 

feature extraction from the hyper-spectral data gives the necessary information to 

develop algorithms that can monitor basic environmental conditions for the specific 

depicted area. The algorithms studied were implemented using a popular software 

tool MATLAB and the results of the classification procedures as well as the full list 

of coding are presented. 
 

In chapter 2, the necessary theoretical background is presented covering basic aspects 

and definitions about Spectroscopy, Electromagnetic Radiation and Remote Sensing. 

In chapter 3 descriptions and details about Hyper-spectral Imaging are provided. In 

chapters 4, 5 and 6 we focus on the processing procedure of hyper-spectral data: 

Preprocessing, management of hyper-spectral classification processes and 

Classification Algorithms. The results of the study are used in chapter 7 for the 

development of MATLAB algorithms for a specific provided hyper-spectral image 

and results are extracted. Finally in chapter 8 provides concluding remarks within 

which the outcomes of the overall project will be discussed. 
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Section A: Background 
 

 

2.  Remote Sensing  
 

A constantly increasing interest in hyper-spectral imaging is observed during the 

recent years with a plethora of applications in various scientific fields such as 

medicine, biochemistry, engineering and environmental studies. Until the beginning 

of the previous decade, only specialists in the field of spectral remote sensing had 

access in hyper-spectral images and proper software tools to process the received 

information. Today the analysis of the hyper-spectral images has become one of the 

most powerful and developing tools in remote sensing. 
 

The term “hyper” in the hyperspectral imaging refers to the vast number of 

different wavelengths that can be measured and stored in this kind of images. Hyper-

spectral data consist of measurements from a large number of spectral zones with 

relatively small bandwidth each. For example the sensor of the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS [36], [72]) collects simultaneously 

data from 224 different spectral zones with bandwidth of 0.4 to 2.5 μm and spatial 

resolution of 20 meters. 
 

Hyper-spectral images provide a great set of data to be used for classification 

and recognition of objects and materials giving a more accurate perspective for the 

extraction of specific information than any other type of remote sensing data 

collection. Classification for a hyperspectral image is the procedure of the creation of 

an information-based representation of the image content in order to provide the 

spatial distribution and location of objects or materials with special properties in a 

studied region. 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: A typical classification system of hyperspectral data 

 

Figure 1 shows the flow chart for a hyperspectral imaging analysis and classification 

system. In this figure we can distinguish three basic processing steps: a) 

preprocessing of data, b) feature extraction and finally c) classification [40]. 
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The preprocessing step precedes the main data processing procedures and it includes 

the isolation of a specific area, noise reduction, enhancements of a specific image 

view etc. There is a large number of preprocessing procedures that can be applied in 

the image depending on the application. Some examples for major remote sensing 

projects are the radiometric calibration, atmospheric correction, enhancement of 

contrast and image registration. 
 

Feature extraction is an optional step of the process and its objective is to 

reduce the spectral or spatial dimensions of the image. This is achieved with the 

selection of an optimum subset of bands in order to avoid estimation problems that 

can be caused from the high correlation of specific bands or areas. In this stage the 

hyperspectral image has been transformed in a “feature image”. The feature 

extraction algorithms must be designed so that the needed information of the specific 

application is kept in order to apply the classification algorithm, while all the 

unnecessary information is deleted. 
 

Classification of hyperspectral data is the process of identification and 

registration of all or some image pixels in a specific class of objects or materials 

based on the statistical properties of the pixel intensities. Classification can be further 

distinguished in two categories, Supervised and Unsupervised. The classified data 

must be checked and certified in order to determine the algorithm accuracy and 

reliability. In the following chapters we will describe with details the total procedure 

of classification in hyperspectral images and we will perform tests and simulations 

for some of those algorithms. 

 

 

2.1 Spectroscopy 
 

In order to fully understand the advantages of hyperspectral imaging it is 

useful to briefly mention some key issues of spectroscopy and the interaction 

between matter and electromagnetic radiation. 

 

2.1.1. Electromagnetic Radiation 
 

Electromagnetic radiation is the energy emitted and absorbed by charged 

particles travelling through space in the form of self-propagating transverse 

oscillating waves of electric and magnetic field (E and M respectively). The electric 

and magnetic fields are perpendicular to the wave energy direction and orthogonal to 

each other. The wave can by described by its wavelength which corresponds to the 
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physical length of a full wave oscillation and frequency which expresses the number 

of wave oscillations per second [60]. 
 

Electromagnetic radiation presents both wave and particle properties. The dual 

nature of the radiation, particle and wave, not mutually excluding but 

complementary, was first discovered from Einstein who expressed radiation as a 

continuous stream of discrete particles or wave energy “packages” that were later 

named photons. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: The electromagnetic wave travels through space with the speed of light c  2.99792 108  . The 

formula connecting wavelength, frequency and speed of light is: c  v 
 

The energy E of a photon depends on the frequency (or equivalently the wavelength) 
 

of the radiation wave: 

E  hv  
hc

   

where is the Planck constant (6.62618x10-34 Js), the speed of light, the frequency 

and the wavelength. Figure 2 was extracted from [60]. 

 
 
 

2.2 Electromagnetic Spectrum 
 

The electromagnetic spectrum is the whole range of possible values for the 

wavelength of the electromagnetic waves and it can extend from extremely large 

frequencies where 


 


 
0

 to extremely small (where the wavelength approaches the 

universe dimensions). For convenience the electromagnetic spectrum is divided in 

spectral bands due to the fact that the energy for each band interacts with matter in 

very different manner. 
 

A spectral band consists of a defined (usually continuous) set of spectral 

lines, where each spectral line corresponds to a specific wavelength. One simple way 
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to distinguish the separate spectral bands depending on the wavelength is the 

following [46]: 

Spectral Bands: Wavelengths: 

Gamma Rays <0.03 nm 

X Rays 0.03 – 300 nm 

Ultraviolet 0.3 – 0.38 μm 

Visible 0.38 – 0.72 μm 

Near infrared 0.72 – 1.30 μm 

Infrared (short – mid – long) 1.30 – 15 μm 

Far infrared 15 – 1000 μm 

Microwaves 0.3 – 30 cm 

Radiowaves >30 cm  
Table 1: For the sun the spectrum extends from gamma rays (small wavelength – high energy) to radiowaves 

(large wavelength and low energy) 

 

The main divisions of the electromagnetic spectrum are in essence arbitrarily defined 

since among the spectral bands many subdivisions can be defined and the transition 

from one spectral band to the other is gradual rather than steep. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Main subdivisions (shades) in an extension of the visible spectrum 
 

2.3 Interaction of radiation and matter – Spectroscopy 
 

Spectroscopy could be defined as the use of the interaction phenomena between 

matter and radiation, such as 
 

a) Absorption, emission b) Reflection c) Scattering d) Transmission 
 

in order to provide quantitative and qualitative analysis of materials and/or study 

natural procedures. Matter can be seen as atoms, molecules, atomic or molecular ions 

or even solid-liquid-aerial objects. The interaction of radiation with matter can cause 

redirection of the radiation and fluctuations of the energy levels of atoms or 

molecules [54]. 
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Figure 4: Any photon beam from any source that passes from a medium (usually air) and contacts with an 

object (2nd medium) then the phenomena of the figure will happen. 
 

2.3.1 Absorption - Emission 
 

The natural basis of spectroscopy is the interaction of light and matter. This was 

detected by Hertz during experiments discovering randomly the photoelectric effects. 

We consider an atomic system consisting of two energy levels E0 and E1 with E0  

E1 occupied by electrons. We assume that the atom is in the state n  0 with energy E0 

. The atom electrons can transit to an excited state n 1 of higher energy E1 
 

, if it interacts with radiation of energy density J (Planck’s Law) of such frequency  
 

, so that the product h is equal with the energy level difference, i.e. h  E1  E0 . 
 

This phenomenon is called absorption. The transition from excited state 
 

initial state n  0 with the simultaneous emission of photons with frequency  where 

h 1 0 is called emission. 

 

2.3.2 Scattering 
 

The absorption of energy from a system (the scatterer) from an incident 

photon and the retransmission of a part of the energy of the photon from the same 

system to different directions, intensities, polarization and wavelength is called 

scattering. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 : The scattered radiation may have a different wavelength, intensity, phase, polarization and 

propagation direction of the incident radiation 
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n 1 in the 



 
 

 

The phenomenon of scattering depends on the nature of the scatterer (material, size) 

and its layout in space (or randomly distributed). 
 

Types of scattering: 
 

• Rayleigh Scattering
 

Rayleigh light scattering is observed for scatterers with size smaller than the 

wavelength 0 of the incident radiation. Examples of phenomena related with 

Rayleigh scattering are a) The blue sky color and the sky color changes during 

sunrise and dawn b) Energy losses in the light propagation through transparent solids 

(crystals, optical fibers etc.) 

• Raman scattering
 

Raman scattering is observed during the simultaneous propagation of two photons 

with frequencies 0 and s ( s  0 ) through an optical medium, where the photon 

0 is absorbed and a part is retransmitted with frequency s of the accompanying 

photon. Energy h 0 s is transmitted as phonon. Raman scattering is essentially 

an amplification of the population of s photons by the photon 0 . Raman scattering 

is found in solid, liquid or aerial propagation medium and takes place when using 

radiation of high intensities. 
 

• Mie Scattering
 

It is a powerful scattering phenomenon from objects with dimensions greater than 0 

. There is a strong relationship between the scattered intensities and the angle of 

incidence. 

• Stokes and Anti-Stokes Scattering
 

It appears during the absorption of a photon 0 from a molecule that causes the 

excitation of the molecule in a vibrating state  1 with the simultaneous emission of 

a photon s where s  0 v . Anti-Stokes scattering appears when a molecule 

decays from a vibrating state  1to another  0 of lower energy with the 

simultaneous absorption of a photon s leading to the emission of a photon 
 

0   s v . 
 

• Brillouin Scattering
 

It appears during the propagation of a photon 0 through crystal medium. 
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2.4 Types of Spectroscopy 
 

Spectroscopy is based on the study of the described phenomena of interaction 

between light and matter. Depending on the application different phenomena may 

present the greatest research interest. Therefore spectroscopy may focus on 

absorption, transmission, reflection and scattering (Raman Spectroscopy), where 

each kind serves different needs. 
 

For example in diagnostic medicine while Raman spectroscopy may give 

more information for a sample, fluorescence spectroscopy may be preferred because 

the signals despite the fact that are shorter, they are more powerful and the medical 

exam is achieved from cheaper medical instruments. Emission spectroscopy is a little 

different since no external sources of radiation are needed. The reason is that the 

sample of study is the radiation transmitter. Typical applications of Spectroscopy can 

be found in various scientific fields: 
 

• Analytical Chemistry: Spectroscopy is widely used in analytical chemistry 

and most of all in solutions stoichiometry.


• Biochemistry: Spectroscopy plays an important role in the area of 

biochemistry as it can help analyze quantitatively and qualitatively protein 

solutions.


• Diagnostic medical instruments: Spectroscopy is one of the basic methods for 

in vitro analysis since most of the diagnostic instruments use it as the main 

principle of operation.


• Industrial applications: Spectroscopy can be mainly used for qualitative 

analysis of the produced products also known as on-line control.
• Environment: One of the most important applications of spectroscopy is the 

measurement of pollutants in both the atmosphere and aquatic environments. 

Moreover Remote Sensing is an excellent tool to map and monitor areas. It is 

extremely useful in mineralogy and geology and it can provide valuable 

information regarding the climate change.
 

2.5 Definition of Remote Sensing 
 

Remote Sensing is the science with the objective to acquire information about an 

object without making a physical contact. The term is generally used to describe the 
 

acquisition of information for Earth’s surface (as well as atmosphere and sea) from 

aerial sensors. This is accomplished with measurement and study of the reflected or 

emitted radiation from specific areas of Earth and through a procedure of processing, 

analyzing and decision making based on this information. Remote sensing is an 
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application of Spectroscopy since it studies the interaction of the incident radiation 

with the targets under study on the surface. 
 

Some key points of the remote sensing imaging system are the following: 
 

A. Source of energy and light: A source of energy illumination providing the 

electromagnetic energy to the target.  
B. Interaction with the atmosphere: As the energy travels from the source to 

the target, it interacts with the atmosphere.  
C. Interaction with the target depending on the properties of radiation and the 

target.  
D. Measurement of the energy from the sensor: After scattering and emission 

of radiation from the target, a (remote) sensor is needed to collect and record 

electromagnetic radiation.  
E. Transmission, reception and processing: The energy that is recorded from 

the sensor must be transmitted electronically to a receiving, processing 

station, where data form an image and the processing stage begins. 
 

Analysis and Interpretation: The processed image is interpreted digitally, 

electronically or optically in order to extract information for the nature of the target. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Schematic description of Remote Sensing [76] 
 

2.5.1 Methods of Remote Sensing 
 

In order for a sensor to collect and record the reflected or emitted energy from a 

target or a surface, it must be located to a steady platform. The Remote sensor 

platforms can be located on the ground (in high places), on aircrafts or on high 

altitude platforms in the earth atmosphere. It can also be located on a space station or 

satellite outside the atmosphere. Because of their orbit, satellites can continuously 

monitor the earth surface. It can be either geosychronous providing constant 

monitoring of a specific area, or low/medium orbit satellites covering a broad area 
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travelling around earth. Usually the choice of method for a remote sensing system is 

based on the cost. The main methods of remote sensing are summarized below: 
 

• Aerophotography


• Individual Sensors (Differential Optical Absorption Spectroscopy, 

Thermocameras)
• Satellites

 

The instruments used for measuring the electromagnetic radiation are generally 

called radiometers and the basic categories are: 
 

• The Imagers (image sensors)
• The Sounders (signal measurement)

 

2.6 Multispectral Images 
 

Significant advances in remote sensing and sensor technology emerged from 

the subdivision of the broad spectrum of radiation in spectral bands of various 

wavelengths. This fact created the concept of multispectral images that is images of 

the target based on the radiation received in specific wavelengths. 
 

A multispectral image is essentially a collection of various monochromatic 

images of the same object. Each of these images is taken from a different sensor 

which isolates a specific portion of radiation wavelength. The very well-known RGB 

color model for images can be seen actually as a multispectral image consisting of a 

red, green and blue image taken from different sensors each one sensitive to specific 

wavelengths. 
 

Usually the satellites carry 3 to 7 (or lately more) radiometers. For example 

France’s SPOT has 3 and Landsat has 7 and they receive images in various spectral 

bands from the visible wavelengths to far IR. Landsat 5 e.g. produces multispectral 

images of 7 bands where the received radiation wavelengths vary from 450 to 1250 

nm [33], [65]. 
 

Remote sensing regarding Earth traditionally uses reflections in the visible 

and infrared wavelengths, emissions from the area of thermal infrared as well as 

radiowaves for the formation of multispectral images (Figure 8, [73]). The use of 

multiband images is also frequent for the depicturing of stellar bodies using 

telescopes equipped with various multispectral sensors (Figure 7, [72]). 

 
 
 
 
 
 
 
 

 

11 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Four aspects of cancer Nebula (Supernova 1054) 1)X-ray band, 2)Visible spectrum 3) Infrared 4) 

Radio telescopic wavelengths  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Images from specific bands from a Landsat measurement and a 
pseudochromatic image as a combination of bands 4 (infrared), 3 (red) and 2 (green) 
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3. Hyperspectral Imaging  
 

The most important breakthrough in remote sensing happened with the 

development of the hyperspectral sensors and the proper software to analyze the 

hyperspectral data. Hyperspectral imaging is a relatively new technology that was 

originally developed mainly for the detection and identification of minerals, 

vegetation and features of the oceanic natural environment. Spectroscopy can be 

used to highlight specific spectral properties that exist due to some special chemical 

bonds of solid, liquid or gas materials. The detection of such materials depends 

highly on the size of the spectral band covered by the sensors, the bandwidth 

resolution of the sensors, the noise level of the radiometers and the concentration of 

the material on the sensor target that will define the reflected radiation power and 

absorption properties for the studied wavelengths. Hyperspectral data is very large 

datasets that require advanced and computationally efficient processing algorithms. 

Hyperspectral data are collected and represented in the form of a cube, the hypercube 

[6], [32]. The spatial information is given in x and y dimensions (as in a simple 

image) and the spectral information is contained in z dimension. 

 

3.1 Hyperspectral Sensors 
 

The imaging spectrometers or hyperspectral sensors are telescopic sensors that 

combine the spatial representation of an imaging sensor for the covered area with the 

analytical properties of a spectrometer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Hypercube example taken for AVIRIS (Airborn Visible-Infrared Imaging 

Spectrometer) system [32] 

 

• They consist of many (up to hundreds) very narrow spectral band providing 

spectral resolution approximately 10nm or less.


• Imaging spectrometers produce a complete, almost continuous spectrum 

representation for each pixel of the image.
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• As a result of this high spectral resolution, imaging spectrometers provide the 

capability of material identification and classification while on the other hand 

multispectral sensors could make limited distinction between materials.
  

Satellite Sensors Manufacturer Number of Bands Spectral Range 

FTHSI on MightySat II Air Force Research lab 256 0.35 to 1.05 μm 

 http://www.af.mil/information/factsheets/factsheet.asp?   

 id=148   

Hyperion on EO-1 NASA Goddard Space Flight Center 220 0.4 to 2.5 μm 

 http://eo1.gsfc.nasa.gov/    
Airborne Sensors Manufacturer   Number of Bands Spectral Range 

AVIRIS (Airborne NASA Jet Propulsion Lab   224 0.4 to 2.5 μm 

Visible Infrared Imaging http://aviris.jpl.nasa.gov/    

Spectrometer)      

HYDICE (Hyperspectral Naval Research Lab  210 0.4 to 2.5 μm 

Digital Imagery      

Collection Experiment)      

  Table 2: Some contemporary Hyperspectral Sensors [33], [54]  

 

3.1.1 Spatial Resolution 
 

For most telescopic instruments, the distance between the target that is detected and 

the sensor platform plays an important role in the determination of the ability of 

spatial information detail and resolution, as well as the size of the depicted area. 

Sensors on platforms far away from the main target typically can depict larger 

geographical areas but cannot provide detailed information. The detail observed in a 

hyperspectral image depends on the spatial resolution of the sensor that is defined as 

the smallest possible feature or object that can be detected. 
 

The spatial resolution of a sensor depends on a factor called Instantaneous 

Field of View (IFOV) and corresponds to the perspective angle of the sensor. This 

factor defines the size of the area that can be visible from specific altitude for given 

time. The size of the area is equal to the product of IFOV with the distance of the 

sensor from the ground. This distance is also called resolution cell and it defines the 

maximum achievable spatial resolution of a sensor [76]. 

 

3.1.2 Spectral Resolution 
 

Spectral Resolution is the ability of a sensor to delimit small wavelength 

intervals of the received radiation. The higher the spectral resolutions then the 

narrower are the wavelength intervals between the bands. 
 

The sensor consists of an analysis filter bank, that is an array of band-pass 

filters that separate the input signal (reflected radiation) into multiple spectral 

components, each one carrying a specific frequency subband of the original signal. 

The term analysis is used to describe the process of decomposition performed by the 

filter bank. Thus the sensor has the ability to know the intensities of radiation per 
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pixel per wavelength subband. If the filter bandwidths are small then we can assume 

that the measured radiation for each band corresponds to a single wavelength. Low 

filter bandwidth on the other hand can cause other problems. The overlap between 

adjacent filters becomes significant and the measured correlation becomes high. This 

means that different bands may actually contain the same information and it cannot 

be used for classification purposes. Moreover the data processing workload required 

becomes large with no apparent gain [6]. 

 

3.2 Spectral Signatures 
 

Reflectance spectrum shows the reflected radiation from a target object over a 

wavelength range. Some materials will reflect radiation of some wavelength while 

they will absorb radiation from other wavelength bands. These patterns of radiation 

reflection or absorption in a wide range of wavelengths give us the ability to 

uniquely identify a specific material. This is the spectral signature of the material. 

Some examples of spectral signatures based on studies ([45], [54], and [66]) are 

presented in the following figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10: Spectral Signatures of various materials based on studies 

 

3.3 Spectral Signatures 
 

Hyper-spectral data provide us with sufficient spectral information for detection 

and classification of unique materials with similar spectral characteristics offering 

the prospect of more accurate and detailed information extraction from any other 

type of telescopic data. 
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Most multispectral sensors (e.g. Landsat, IKONOS and AVHRR) measure the 

reflection and/or emission of radiation in only few relatively broad wavelength bands 

located in non-contiguous sections of the spectrum. Therefore in many bands no 

actual measurement is performed. On the contrary hyperspectral sensors measure the 

radiation in a cascade of close and continuous wavelength bands. (Figures 11 [1], 

[75]) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Spectral Imaging techniques and Comparative representation of the 

spectral cubes for hyper-spectral and multispectral imaging 
 

 

The research spectrometers measure the reflectance in many extremely narrow bands 

of wavelength and therefore the calculated spectrum is presented as a continuous 

curve. When a spectrometer is used in a remote sensor the resulted images measure 

and record the reflectance spectrum for every pixel of the image. The reflectance 

spectrum for each pixel is very similar with the results provided by a laboratory 

spectrometer when measuring a specific material and therefore it provides more 

complete information from a similar multispectral image. 

 

3.4 Applications of Hyperspectral Imaging 
 

Hyper-spectral remote sensing has been used mostly by geologists to map 

minerals on the surface ([3], [9]) and identify soil properties such as moisture, 
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salinity and yields of farming crops. It is also used by agronomists and botanists to 

classify vegetation types [9], to study the chemical composition of plants ([31], [51]) 

and to identify plant diseases. Moreover it is used also by many other scientific fields 

including medicine with the optical biopsy as a noninvasive diagnostic method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12: Example application of hyperspectral imaging in geology [75]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: a) Reflectance Spectra for three materials provided by the multispectral sensor of Landsat 7 

and processed by ENVI software b)Spectra for the same materials from a laboratory spectrometer c) 

Spectra for the 3 materials from hyper-spectral sensor AVIRIS. The curve interruptions are caused 

because of unreliable measurements caused by the light absorption of the atmosphere [1] 
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4.  Processing of Hyperspectral Data   
It has already been mentioned that the flow chart of a hyperspectral data 

processing system can be divided into three main stages: the preprocessing stage, the 

feature extraction stage and finally the classification. In this section we will examine 

some key issues related to preprocessing and study various techniques of data 

minimization and feature extraction before moving to the final stage of classification. 

 

4.1 Preprocessing 
 

Preprocessing precedes the main stage of data analysis and information retrieval. 

Preprocessing stage is designed in order to reduce noise, enhance some aspects from 

the available data, reject redundant or highly correlated information etc. Some 

examples are: Radiometric Calibration, Atmospheric Correction, Contrast 

Enhancement and Image Registration. 

 

4.1.1 Atmospheric Correction 
 

Before contact the Earth surface the radiation used for remote sensing travels a 

great distance through the atmosphere. Atmosphere consists of particles and gases 

that affect the received radiation through scattering and absorption mechanisms [8]. 

Scattering occurs when particles and large molecules of gases interact with 

electromagnetic radiation resulting redirection. The extent of the phenomenon 

depends on the wavelength of radiation, the concentration of particles and the 

distance covered by the radiation inside the atmosphere. Absorption occurs when 

atmospheric components absorb energy from the radiation at specific wavelengths. 

Another major problem may occur due to radiation scattering from objects adjacent 

to the target of interest that may present completely different reflectance 

characteristics. All the above mentioned issues compose one particularly difficult 

problem. 
 

Remote sensing images do not contain information exclusively for the area (or 

object) of interest but also the atmosphere making the atmospheric correction 

procedure a very important piece of the preprocessing procedure. In order for us to 

suppress the atmospheric effects, properties and quantities such as the amount of 

water vapor, the composition of substances and the distribution of solid particles in 

the gas layers etc. must be known or estimated. However this information is not often 

available through direct measurements of the atmospheric features and therefore 

various techniques have been developed in order to export this kind of information 

through the hyperspectral data. 
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4.1.2 Geometric Correction 
 

Due to the geometric complexity of the acquisition process, the telescopic satellite 

images are affected by various types of distortions and therefore they cannot be used 

in conjunction with topographic maps. This distortion is caused by: 
 

• The Earth’s curvature and the terrain of the land surface
• The relative motion between satellite (and aircraft) and earth during image 

acquisition and changes of position and velocity of the satellite in orbit.
• The spatial resolution and the angle at the time of the image acquisition.

 

Geometric image correction is a process that generates new images with the use of 

scaling, rotation, perspective projection and other transformations that give the image 

similar features with the topographic maps. 

 

4.1.3 Radiometric Calibration 
 

The ability to detect and quantify changes in the Earth’s environment depends 

on sensors that can provide calibrated (known accuracy and precision) and consistent 

measurements of the Earth’s surface features through time. The correct interpretation 

of scientific information from a global, long-term series of remote-sensing products 

requires the ability to discriminate between product artifacts and changes in the Earth 

processes being monitored. Radiometric characterization and calibration is a 

prerequisite for creating high-quality science data, and consequently, higher-level 

downstream products. 
 

Radiometric calibration consists in linking pixels intensities to a physical 

parameter. Its main goal is to allow comparisons of spectra from different origins and 

also measurements of important physical parameters. This operation is all-important 

since the flux distribution in the raw spectrum is very different from what has been 

emitted by the observed object. Radiometric calibration contains the determination of 

the instrument's spectral response by the comparison of the observed spectrum with a 

reference spectrum for the object under study. By the division of one spectrum with 

the other, a calibration profile is obtained that can be used for radiometric scaling for 

the rest of the recorded data. It is obvious that Radiometric Calibration is connected 

with the atmospheric correction and the two procedures can be seen as one. However 

in this point Radiometric Calibration is referred to the different flux distribution 

coming from the radiation source (usually the sun – it is the use of standardized 

illuminants) and it also deals with the compensation of the effects caused by the 

several filters used from the sensors. 
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4.1.4 Data Reduction 
 

Hyperspectral imaging data consist of hundreds of channels and together with 

the actual spatial size of the image can lead to large computational workload and 

extended processing time. Doubling the number of channels, may cause increase of 

the execution time by a factor quite larger than two. Moreover the simultaneous 

processing of highly correlated channels can cause the collapse of the classification 

algorithm in some cases. 
 

In many current applications, the image sizes may be extremely big. For 

example, the image used during this dissertation as reference had size greater than 1 

GB. Therefore it is necessary to use effective methods for feature extraction and 

minimization of the hyperspectral dimensions. These methods are usually called 

Feature Extraction and Band Reduction. If the use of the preprocessing algorithms is 

not done carefully, they may remove small but important differences between spectra 

of different materials that could be used from the classification algorithm. For 

example the effect of types of waste present in a vegetated area is perceived in the 

reflectance spectrum only in few bands and specific wavelengths so this process 

requires much attention. 
 

A simple method of data reduction is based on the fact that adjacent spectral 

bands are usually high correlated. This way we can reduce the dimensionality of the 

wavelength axis without significant effect at the final results. Band Reduction is an 

algorithm that chooses the “best” bands as far as the classification algorithm is 

concerned. The choice is based in various criteria. Feature Extraction is based on 

mathematical and statistical models applied to data in order to achieve better 

expression of the original data with no correlation between zones and consequently 

reduce its dimensions. 

 

4.1.4 Feature Extraction and the Feature Space 
 

Feature extraction is the identification of features or objects of the real world 

into the spatial data of a hyperspectral image. The main purpose of feature extraction 

is, using numerical calculations, of the “best” features for specific materials. As a 

“good” feature we can define a quantity that has similar values for all objects/pixels 

of the same class (of the same material) and remarkable divergent values for 

objects/pixels of different classes. Usually a single feature is not sufficient to 

distinguish objects of different classes. As mentioned before, feature extraction is an 

optional preprocessing stage before classification that reduces the spatial or spectral 
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dimensionality of the image. It achieves by the use of spatial filters or spectral 

transformations to reduce the data volume and/or enhance the content of the 

hyperspectral data. After the feature extraction stage, it is said that the hyperspectral 

image has been transformed to a feature image. 
 

For better understanding of the classification process a new term is 

introduced: the feature space. The satellite remote sensors measure the reflected 

radiation from the surface. These measurements are transformed into digital numbers, 

usually positive integer values from 0 to 255. Consequently each pixel of the image 

is characterized by a series of digital numbers, one for each spectral band. This 

sequence of numbers can be considered as coordinates of points in a 

multidimensional Cartesian space whose axes represent the spectral bands. This 

space is called feature space. It must be noted that this representation does not 

include information on the position of the pixel in the image. 
 

To understand the usefulness of the feature space, let’s consider a two 

dimensional example using two bands, one wavelength in the red color range and 

another in the near infrared range. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Two dimensional representation for two wavelengths (red, near IR) for various materials 

 

As mentioned, objects from the same or similar materials are characterized by similar 

and close spectral signatures i.e. spectral reflectance responses, or else similar digital 

values for each spectral band. As shown in Figure 14 the pixels corresponding to the 

same materials are grouped together in the feature space defined from the two 

spectral bands. Thus the material for each group can be easily identified using these 

features as a spectral signature. 
 

• The water has low reflectance rate for both red and near IR, therefore the 

corresponding pixels are near the origin.


• The reflectance of waste in the near IR band is slightly larger than the value 

of the red band and therefore the corresponding pixels are close in y  x line.
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• The surfaces corresponding to vegetated areas have higher reflectance in the 

near IR than in the red range so those pixels are located in the left part of the 

feature space.
 

The classification problem for a surface has transformed as the process of pixel 

assignment in one of the defined groups of the feature space. Unfortunately the 

representation of an image in the feature space is never as simple as in the above 

examples. Many pixels of an image may correspond to more than one surface due to 

errors, material diversity, blurring 

 

4.2 Feature Extraction algorithms 
 

The following algorithms are representative of the feature extraction approach that is 

usually used in remote sensing: 
 

• Principal Component Analysis (PCA)
• Feedback Classification Algorithm (FCA)

 

During the implementation stage, it was attempted to perform data reduction with the 

PCA Feature Extraction technique. Code was developed to extract the transformation 

matrices for PCA. However due to temporal and spatial reasons we were not able to 

provide classification results in a data set where PCA was performed. However in 

order to provide a complete overview of the Hyper-spectral imaging processing 

chain, a brief analysis of PCA algorithm is presented and MATLAB code is provided 

in the Appendix. 

 

4.2.1 Principle Component Analysis 
 

The steps of the Principal Component Analysis are the following: 
 

1. We calculate the covariance matrix for the given data set.  
2. We calculate the eigenvalues and eigenvectors of the covariance matrix: 

 

V , D  eig C
 

3. We reorder the eigenvectors relatively to the eigenvalues in a decreasing 

order.  
4. We project the dataset on the principal components. 

 

Calculation of the eigenvalues of a square matrix can be done via the characteristic 

polynomial. If we assume that  is an eigenvalue for n×n matrix A , then the system 

of linear equations A  I  v  0 , where I is the identity matrix, has one non-zero 
 

solution v (an eigenvector) which is equivalent with the following expression for the 
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determinant: det A  I  0 . Therefore the roots of the polynomial p    det A  

Ι are the eigenvalues of matrix A and this polynomial is called characteristic. This 

also means that matrix A has at most n eigenvalues. Knowing the eigenvalues of a 

matrix A , we can calculate the eigenvalues by solving the equation: A  I  v  0 
 

Principal Component Analysis (PCA) is a standardized technique for 

multidimensional datasets [48]. It is the process of transformation of a set of 

correlated variables to an uncorrelated set. The transformation is essentially a 

rotation of axes in various directions that are orthogonal to each other and therefore 

there is no correlation between the variables. 
 

Data in hyperspectral images are represented as a matrix where the lines 

represent the pixels and the columns the wavelengths or spectral bands. If we study 

an image n n of N spectral bands then the data matrix has n2 lines and N columns. 

This is the way we calculate the covariance matrix for the specific data set. The final 

matrix will have dimensions N  N and will provide the relationship between the 

spectral bands. The orthogonal basis for a symmetric covariance matrix can be found 

by the calculation of the eigenvalues and eigenvectors. 
 

The result is N eigenvalues 1 , 2 , 3 , ..., N 1, N  and the corresponding 

orthogonal eigenvector. If we reorder decreasingly the eigenvalues then the greatest 

eigenvalue will provide the direction of greater variance of data. Since the first K 

vectors represent the significant variation throughout the dataset we can reduce the 

dimensionality of the original image pixels by projecting each one to the first K 

vectors. Thus the dimensionality is reduced from N to K and as a result a significant 

reduction in the necessary computational workload is achieved. Let’s assume that we 

have two classes and two overlapping spectral bands as shown in the figure. We also 

see the one-dimensional histogram of the date from the two bands. Every histogram 

gives one peak and it is not possible to discriminate the pixels to classes based on 

them. However if a new dimension is created through the direction of maximum 

variance then two peaks will appear in the histogram of this new “band”. A second 

new “band” will occur orthogonal to the first. This band has small variance and the 

pixel samples are concentrated in a narrow range of intensities. In other words the 

first “band” contains most of the information and can be used for classification. The 

second “band” can be rejected since it cannot help us. This process reduces 

dimensionality from 2 to 1. The new bands are called principal components. 
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5.  Hyperspectral Imaging Classification   
Classification of hyperspectral data is the process of identification and 

registration of each pixel of the image in a specific class according to some statistical 

characteristics of the intensities values of each pixel. The hyperspectral imaging 

classification as a procedure can be regarded as a subset of the pattern recognition 

science. 

 

5.1 Feature Extraction algorithms 
 

Pattern Recognition is the science with the objective to identify automatically 

useful regularities in complicated and noisy environments. More specifically the aim 

of pattern recognition is to classify objectives in a number of categories or classes. A 

general flow diagram of a pattern recognition system is shown in the following 

figure: 
 
 
 
 
 
 
 
 
 

 
Figure 15: The general flow chart of a Pattern Recognition System 

 

A physical pattern or model is measured by sensor measurement equipment. The 
 

sensor  measures  and  records  a  series  of  numerical  values.  This  set  of  values   

X  x1 x2 xn is usually represented as a vector. Thus in the case of hyper- 
 

spectral imaging each pixel is represented as a vector with different intensity values 

in each spectral band. The vector is then fed to the classifier which decides which of 

the patterns is represented for each pixel [8]. 

 

5.2 Classification 
 

As mentioned the objects are described in the feature space. In this space each 
 

object is denoted by a vector  x  x1 x2 xN where  xi ( i 1...N ) denotes one  
 

of the N features. In the case of hyperspectral imaging the objects are the pixels and 

the features are the intensity values for each band of wavelengths (or an equivalent 

transformation). The result is the classification and registration of the pixel in one of 

the classes  j where j 1...K with K the total number of distinct classes. 
 

Formalizing the definition of the feature space in our application, we basically 

take the N dimensional histogram of the image and the classification is 
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actually the process of segmentation of the N dimensional space in K areas with the 

use of a decision function f xsuch as f x  j , j 1...K 
 

In any case some errors are expected to happen during classification. The 

decision function must be chosen so that it minimizes these classification errors. 

Let’s see the following example: 
 

We assume that we have a data set consisting of three typical flower species and the 

results are presented in the feature space, where the assumed features are the density 

and the length of the petals. The figure below shows that the flowers are distributed 

into three clearly separable clusters. For a given flower we want to create a decision 

rule in order to classify it in one of the predefined classes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16: a) In the specific classification approach we can define specific decision boundaries in the feature 

space (Figure obtained by Google images) b) In this example no decision function (with no transformation) 

can give perfect results if we use the stochastic properties of the classes based on the minimization of mean 

square error [7] 

 

5.3 Classification Algorithms 
 

Pixels of the hyperspectral image are exported in order to train the classifier to 

recognize patterns. Based on these patterns the classifier creates the decision 

functions for the assignment of each pixel in the feature space [8]. Two main 

categories for classification are defined: Supervised and Unsupervised classification. 

Supervised Classification: There is a prior knowledge of the spatial distribution of 

classes in the image. Therefore through a procedure of data collection from the 

depicted area, training sites are created. The spectral features of the sites are used to 

train the algorithm for the classification of the remaining pixels of the image. This 

way every pixel of the image including the training site pixels is evaluated and 

registered to the class that is most probable to belong to. 
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Unsupervised Classification: The computer algorithm automatically groups the 

pixels with similar statistical and spectral features (means, variances, covariance 

matrices) into unique clusters according to statistically defined criteria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17: Block diagram of the classification algorithms (a) Unsupervised (b) Supervised 

 

The classification methods can also be separated to parametric and non-parametric. 

In parametric classification the attributed of each class is defined by the PDF 

(Probability Density Function) of the pixels belonging to the class, so its parameters 

should be either known or extracted during the training procedure. An example of a 

PDF is the multidimensional Gaussian distribution where each dimension 

corresponds to a spectral band. Distribution parameters are the mean vector and the 

covariance matrix. Multidimensional Gaussian distribution is commonly used in 

Maximum Likelihood algorithm. Non-parametric classification does not use the PDF 

of the classes. 

 

5.4 Training Stage 
 

Pixel classification is performed automatically by some algorithm; however the 

training stage must be done carefully by the system designer/administrator. The 

quality of the training stage is a very important factor for classification, since it 

essentially defines the performance of the final result. 
 

The main objectives of the training process are: 
 

• To determine which classes can be identified in the image.
• To extract the statistical attributes and parameters describing the distribution 

of value intensities for each class.
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A key requirement for the classification is the completeness of the samples of the 

training sites; they must include sufficient samples for all the reflective surfaces of 

the image. Image segmentation in reflectance surfaces is generally a slightly different 

procedure than the identification of areas of interest in the image. Sometimes a 

surface may contain pixels that present quite different values of reflectance 

intensities. In this case it is necessary to define smaller classes that can be identified 

by the designer and at the last stage by the classification algorithm. Another very 

significant condition for the population of the training samples is that they must be 

representative of the entire population of their class. This means that: 
 

• The training sample population must be adequately large in order to provide 

accurate statistical estimates for the parameters of the class’ distribution.


• The training samples must be distributed in an homogeneous manner in order 

to reflect the spatial variance of classes in the image
 

It is therefore concluded that there is a condition of minimum number of training 

samples needed for the classification algorithm that depends on the number of 

spectral bands used. It is generally true that the greater the number of training 

samples is in a class, the better statistical description will be achieved. It is 

nevertheless impossible to provide an analytic and accurate formula in order to 

calculate the needed number of training samples due to the different spatial 

distribution and size in each different image. In [12] it was suggested that the 

minimum number of samples for classification in n classes is from 10n to100n . 

Alternatively in [25] it was proposed that the training samples must cover a 

percentage between 1% and 3% of the total area of the image. 
 

Many times the training is divided into two sets, one for calculating attributes 

of classes and one for certification and evaluation of the accuracy of the decision 

functions. 

 

5.5 Accuracy Assessment 
 

Classification of a hyperspectral image leads to the identification of image pixels 

from different materials (spectrally). When all the pixels have been assigned in one 

or more classes we can create thematic maps which depending on the nature of the 

application can be used for the identification of complete objects or the extraction of 

statistical attributes for these items. 
 

When the classification of image pixels is completed, it is important to calculate 

the accuracy of the results. The classification accuracy is verified using a set of 
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samples obviously different from the one used for classification. The classified 

image is compared with the samples of the verification image and the result is given 

by an accuracy matrix [14]. The columns of the matrix represent the verification data 

while the lines represent the classified image 
 

     Verification Samples    

    Water Woods Bare Soils Crops Row Total  

  Water  65 4 22 24 115  

Classified 
 Woods  6 81 5 8 100  
 
Bare Soils 

 
0 11 85 19 115 

 

Image    
 

Crops 
 

1 7 3 90 104 
 

    

  Col Total  75 103 115 141 434 ←Total number 

         of pixels 
  Table 3: Example of an accuracy matrix, Average Accuracy: 321/434 = 74%  

 

Evaluation of accuracy helps us to focus on certain critical points, e.g. the poor 

distinction among some classes. In this case we may have to perform more 

preprocessing, apply different data reduction strategies or even merge these classes. 

In any case the entire process of classification must be repeated including the training 

stage. 

 

5.6 Spectral Libraries and Reference Spectra 
 

Spectral Libraries are collections of reflectance spectra for materials with known 

composition created either from observation in the nature or in the laboratory. Many 

researchers maintain spectral libraries for materials regarding their research field and 

they use them during analysis of hyperspectral images. There are many available 

spectral libraries (e.g. USGS Spectral Library, Johns Hopkins University Spectral 

Libraries etc.). The results from these libraries can be used as reference spectra for 

supervised classification algorithms. 
 

The quality of reference spectra (either from measurements or a spectral library) is 

a very important factor with great influence in the classification results and this is 

why there are many methods proposed regarding the collection process. In case those 

unique, “pure” pixels are used as spectral images then the reflectance spectrum is 

almost deterministic and defined by the material of the pixel. If there are different 

features, materials, texture etc. in pixels of the same class then the reference spectra 

must be chosen from a statistic parameter. For example we can calculate the mean 

reflectance per band, or the median value, or the value most appeared in the dataset 

(for discrete set of intensities). A practical example is presented in [11]. A small test-

training image area of 100 pixels is chosen for detailed analysis. Reference spectra 
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for this area have been extracted. The image depicts a dense forest that includes firs, 

shadows and rocks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 18: a) 10x10 pixel area of the hyperspectral image. The bright pixels are the illuminated tops of the 

trees and the dark shadows are the areas between trees b) Reference spectra have been calculated from the 

mean, the median and the most frequently appeared value for 17 channels. Moreover the spectrum of a 

“pure” fir pixel is also presented c) The spectral angles between the small test area pixels 

 

Comparison of collection methods for reflectance spectrum has been done using 

spectral angles and creating representation images of the spectral angles. Thus in 

Figure 18(c) the bright pixels indicate the low values of spectral angle while the 

darker pixels indicate larger spectral angles. Low spectral angles indicate that the 

reference spectrum achieves better description of the actual area and therefore the 

population of bright pixels in the image gives us the better reference spectrum. In the 

presented example it was decided that mean value gives the best representation of the 

area and is chosen as the reference spectrum. Based on these conclusions it was 

decided to use mean spectrum as reference (spectral signature) during algorithm 

implementation. 

 

5.7 Mixed Pixels and Spectral Unmixing 
 

One of the biggest challenges in hyperspectral imaging applications is the process 

of spectral unmixing during which a mixed pixel can be reconstructed from known 

spectra of the image or even analyzed in separate spectra of its components 

(endmembers). 
 

The existence of mixed pixels is a result of the fact that some areas are made up 

from different materials, features or classes that may be geometrically smaller than 

the sensor’s spatial resolution. If we examine the hypothetical map of Figure 19 we 

can observe that some pixels consist of two or more classes. The extracted 
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reflectance spectrum in this case will be the result of synthesis of the reference 

spectra of each contained class. Therefore pixel identification may be extremely 

hard. There are in fact some methods to deal with this problem but in most of the 

cases there is a statistical uncertainty. A relative improvement may occur with the 

increase of sensor’s spatial resolution (reduction of pixel size) as in the case of the 

small inside square of the figure reducing the number of mixed pixels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: The rule for optimum classification regarding mixed pixels is to search for a spatial resolution 

that can approximate the size of the smallest class we want to identify 

 

Spatial resolution is however limited so it may be necessary that the spectral 

signature of mixed pixels must be analyzed to its components so that each of the 

classes will be identified. It is very possible that the spectral features of a class may 

dominate the spectral signature of the mixed pixel. However in many applications it 

may be necessary to perform unmixing analysis. This term is used to define the 

process of detection and identification of one or more materials in a pixel. The 

spectrum of each pixel can then be represented as a weighted sum of the 

endmembers spectral signatures. Plenty of algorithms have been developed for this 

purpose: ICA, VCA and the FVA, (Palmadesso, et al., 1995 and Bowles, et al., 

1995). These algorithms were used to approximately detect the endmembers when no 

prior knowledge existed regarding the materials that define the spectral mixture. In 

order for these algorithms to be effective, it is necessary to have access in spectral 

libraries that contain sufficient and appropriate samples of reflectance spectra. 
 

During the study the effect of mixed pixels was studied but there was no 

attempt to perform spectral unmixing since the existing information for the area were 

insufficient. 
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Section B: Algorithms and Implementation 
 

 

6.  Hyperspectral Imaging Classification   
Spectral classification is a subject of the Pattern Recognition science and 

pattern recognition algorithms can be used to identify objects and materials into 

predefined classes. Various classification techniques have been suggested including: 

minimum distance (Euclidean, Fisher Linear Discriminant, Mahalanobis, etc.), 

maximum likelihood and fuzzy logic algorithms such as Linear Spectral Unmixing, 

Mixed Tuned Matched Filtering etc. Hyperspectral data can also be classified with 

conventional algorithms which are often used in multispectral classification. In this 

case we must pay extra attention to the bands that will be chosen to extract 

information, since only few of the hundreds of hyperspectral bands will be used from 

the algorithm. However several algorithms are developed to classify hyperspectral 

data and they operate more effectively in the hyper-dimensional space. In these cases 

the training data play a prominent role in the classification procedure. In the 

following sections we will mention some of the basic classification algorithms for 

hyperspectral data [1, 25, 6, and 7]. 

 

6.1 Parallelepiped Classification 
 

Parallelepiped algorithm uses a very simple decision rule. With the use of 

thresholds applied in the spectral signature of each pixel it decides if the pixel is 

member of a class or not. These thresholds create a n  dimensional parallelepiped in 

the data feature space. The dimensions of the parallelepiped are defined by the 

standard deviation of each dimension of the spectral values of each class. If the pixel 

value is in the range defined by the thresholds (the value is into the parallelepiped) 

the classifier assigns it in the specific class. If a pixel is not included in any of the 

parallelepipeds defined by the classes, it is assigned in class 0 and it is characterized 

as unclassified. Finally if the thresholds are defined in such a way that it is possible 

for a pixel to be included in more than one classes, it is assigned in class 255 

(overlap class). 
 

The classification accuracy for the algorithm depends on the lower and higher values 

for each axis. The threshold values are determined from the statistical parameters of 

each spectral class. It is necessary to take into account the variances of the pixels of 

each class before the threshold values are set. 

 
 
 

31 



 
 

 

In the example of Figure 20 it is obvious that some pixels may appear in more 

than one spectral box. This fact may be the result of the correlation of the spectral 

classes for some classes and it can be avoided with the adjustment of the 

parallelepiped dimensions. However smaller boxes may result in more unclassified 

pixels [25]. 
 

Usually the parallelepiped algorithm is used when speed is a requirement. 

Unfortunately this may result in cases where pixels remain unclassified or are 

assigned in multiple overlapping classes. The algorithm is supervised and can be 

either parametric or non-parametric. This relies on the designer and the possibility 

that statistical parameters are used for the determination of the thresholds. For 

example the most common rule for setting the thresholds is: 
 

 c , k   a   c , k   vk i , j    c , k   a c , k  

lc ,min   vk i , j   lc,max 
 

where c , k the mean value of the pixels of class c in band k and c , k the 

corresponding standard deviation. The algorithm checks if the value vk i , j of pixel 

( i , j ) is within the limits of the inequality. If the condition is true for every k then 

the pixel is classified as a member of class c . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20: Example for classification with two spectral bands. Each class is defined by 

a spectral "box". Some parallelepipeds may overlap 
 

6.2 Minimum Distance – Nearest Neighbor algorithms 
 

The decision function for these algorithms is that each pixel is assigned to the cluster 

of the class that is nearest. Thus we need a distance measure. There are three versions 

of the classifier according to the definition of the nearest cluster: 
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1. Classify each pixel to the class whose center is nearest to the vector sample. The 

centers of the class are defined during the training stage. The decision function of 

this class may be easily implemented.  
2. Classify each pixel to the class of the nearest sample that was taken into account 

during the training stage. Implementation of this algorithm may be quite difficult 

since the distance of the given sample to all the samples in all the classes must be 

calculated.  
3. Identify the k nearest samples [56] that were used in the training stage and classify  

each pixel based on a majority rule. This version is called k nearest neighbor and it 

has the same difficulty as method 2. The two methods are the same for k 1 
 

These classification algorithms are non-parametric since the decision is not based on 

the PDF. However the determination of the cluster centers may be defined by a 

statistical parameter. The algorithms may be supervised or unsupervised if an 

automatic clustering algorithm is used. It can also be proved that Nearest Neighbor 

algorithms may perform twice as worse as the maximum likelihood. 
 

The classification results are greatly affected by the scaling of the axis in the 

feature space. This means that spectral bands with larger values always play a more 

important role than bands that may have smaller values but offer useful properties as 

far as classification is concerned. A common practice is to implement a dynamic 

range adjustment in the bands before classification, so that the intensity ranges for 

each band are equal. Another technique is to normalize the distance to standard 

deviation. 

 
6.2.1 Euclidean Distance 

 
In most applications it is desired that every pixel of the image is assigned to 

one of the predefined C classes. Euclidean distance algorithm takes C reference 

pixels of the image. These pixels represent the classes that we want to distinguish. In 

most of the cases the reference pixels are not actual image pixels but a statistically 

estimated representative pixel. This will define the center of the class. As mentioned 

before, the center may be the mean of the training set, or the median, or another set 

of values based on a custom rule. We calculate the distance of each image pixel 

using the Euclidean equation: 
 

g c i , j  

           

v i , j  m c T v i , j  mc   v 
c i , j   v i , j     

, 
  


k k   

  N  

mc k 

   

  vk i , j  c , k 2   


 


c , k    
k 1 
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where vk i , j is the intensity value for pixel 

value of the training pixels of class c in band 

training set pixels mean value is given by: 

m c   
1

 n vi  

n
 i1 

 

i , j  and band k and c , k the mean 

k . For a given population n of the 

 

where vi are the pixels of the training set. Each pixel is registered in the class that 

gives the minimum distance by the following rule: 

Class i , j   arg min g c i , j 
c 

 

When all the pixels of the image are classified as members of a class, a new center 

value per class is calculated with the inclusion of the image pixels. The procedure is 

repeated. Iterations may continue until no pixel changes class or a predefined 

iteration number is reached. Usually the convergence is achieved in less than 5 

iterations. The steps of the Euclidean distance classifier are: 
 

• Get C initial means (from a training set)
• For each iteration 

o Calculate pixel distance and assign a class  

o Calculate new means based on the class members  

o If no pixel class change or a specific number of iterations is reached exit loop  

• Return the classifier matrix
 

This algorithm is widely used but it has a major drawback. It assumes that the pixels 

are evenly distributed with circular symmetry around the class center and that the 

bands are essentially uncorrelated. It basically assumes that covariance matrix is an 

identity matrix. If the divergence from this hypothesis is large then the algorithm 

may fail. 

 

6.2.1 Mahalanobis Distance 
 

In order to avoid the problem induced by the Euclidean Distance algorithm, 

Mahalanobis Minimum Distance algorithm includes the covariance matrix in the 

procedure. This way the problem of non-symmetrical, correlated distributions is 

solved. Mahalanobis distance uses statistics of each distinct spectral class for 

implementation of the classifier. Distance calculation is performed by taking each 

class’s covariance. This way we have the ability to take into account different 

distributions for the data classes providing highest accuracy. The distance calculation 

matrix is given by: 
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g c i , j    v i , j  m c T Cc
1 v i , j mc 

 

where Cc
1 is the inverse of the covariance matrix for i  th class. The covariance 

matrix for each class is calculated from the training set of samples. 
 

Covariance quantifies the way the pixel dimensions diverge from the mean 

relatively to each other. It is always measured between two different dimensions of a 

multivariate variable. If we calculate the covariance of a dimension with itself then 

the result is equal to variance. The formula to calculate covariance is similar with the 

variance formula. 
n 

X i k  X k X i l  X l  cov X 

 k , X l   i


1  
n 1 

 

where k , l are the dimension indexes and i is the multidimensional sample index. If 

the covariance between two dimensions is negative then when the value of one 

dimension rises then the value of the other reduces. In case covariance is zero then 

the two dimensions vary completely independently. If covariance is unity, then 

actually the two dimensions can be replaced by a single dimension since they behave 

with exactly the same manner. Assuming a dataset with three dimensions x, y , z 
 

then we can calculate cov x, y  ,  cov x, z  and cov xy , z . Generally for a dataset 
 

n! 

with n dimensions we can calculate 2 n  2! different types of covariance. We 

can therefore define the covariance matrix as follows:   

Cnn    ci , j , c j ,i   cov Dim i , Dim  j 
 

where Cnn is a n n square matrix and Dim iis the i-th dimension. For example the 

element C2,3 of the matrix is equal to the covariance between dimensions 2 and 
 

3. It can be easily understood that since it is a square matrix the elements in the 

matrix diagonal give the variances for each dimension. Moreover since cov x, y   

cov  y , xthe covariance matrix is also symmetric. 

 

6.3 Maximum Likelihood and Bayesian Classifier 
 

Maximum Likelihood classifier is based on a fundamental stochastic analysis 

technique and therefore basic knowledge of probability theory is required. 
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Conditional Probability: Conditional Probability is denotes as p A / Band it is the 

probability that event A will occur given that event B is also true (has already 

occurred). 

Bayes Theorem: If p A, B is the joint probability that both events A and B occur, 

then Bayes theorem claims that: 
 

p A, B   p A / B  p B   p B / A  p A
 

or else: 

p  A / B   p B / A 
p
p 

B

A


 
 

Maximum Likelihood (ML) algorithm uses the training sets to estimate mean 

values and the covariance matrix for each class. These estimates are used to calculate 

probabilities and therefore the algorithm takes into account the variations of the 

intensities rather than mean values. Since the estimates are produced from the 

training set, the reliability and accuracy of the algorithm depends on the training set 

collection process. If the training samples are carefully collected, then maximum 

likelihood algorithm performs quite satisfactory. One advantage of this algorithm is 

that it also provides estimates of the overlapping regions based on the statistical 

knowledge of distribution. It differs from the parallelepiped method that uses only 

the minimum and maximum values. ML algorithm is obviously a parametric 

algorithm for supervised classification. With proper conversions ML algorithm can 

be used in an unsupervised configuration. 
 

However the algorithm does an important assumption. The intensities 

of the classes are assumed to follow Gaussian distribution, and the joint 

multivariate distribution of the vector that carries the spectral signature for 

the pixel follow the multivariate Gaussian distribution. Gaussian 

approximation can be verified from the histograms of the intensity values for 

the training sets. Even if there is no straight fit with Gaussian distribution, the 

algorithm may perform adequately. The basis of the ML algorithm is the 

calculation of the following probability: 

p xi , j / c 
 1      


D2 

        

exp 
 

 

      

 

2 
     

 

2
 

Cc         
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where D2 is Mahalanobis distance. p xi , j / cis the probability that the intensities 

from vector xi , j pixel i , j  occur given the fact that pixel i , j  is member of class 

c. The decision rule for the ML classifier is based on the following rationale: For a 

given vector of intensities the probability that the specific pixel is member of a class 

is evaluated. The class that maximizes the likelihood and therefore it is more 

probable to be valid is selected and the pixel is assigned to the specific class. 

Mathematically this can be written as: 

Class i , j   arg max p c / xi , j 
c 

 arg max p c / x i , j  p xi , j 
c  

The last result is valid since  p xi , j  is common for all the classes and does not affect 
 

the argument that maximizes the rule. If we now take into account the Bayes theorem 

then we conclude that the decision rule used from the ML classifier is the following: 

Class i , j   arg max p xi , j  / c  p c
c  

As an example, if we define two classes then if  p x i , j  / c1  p c1   p xi , j  / c2  p c2 
 

then pixel i,jis  assigned  in  classc1else  in  classc2.  The  estimates  of  the 
 

distributions p xi , j  / c are known. This is the a posteriori probability. However 
 

p c , also known as a priori probability is usually unknown. A priori probability is 

the knowledge of the percentage of the areas of each class that occupy the image. If 

we consider the case that we have no prior information then as a first step we assume 

that  p c is equal for all classes. Therefore ML algorithm is calculated through p xi 

, j  / c. The algorithm will perform satisfactory in cases where the classes are 
 

relatively equally distributed in the image. Errors will occur if the population of one 

or more class is quite smaller. This problem will be dealt in a following paragraph. 
 

Given the fact that the covariance matrix is used there is no need for axis 

scaling. The algorithm may also be implemented iteratively. After the classification 

of all pixels, mean values and the covariance matrix are re-evaluated and a new 

classification procedure begins. The procedure stops if there is no change in the 

assigned pixel classes or a predefined number of iterations are reached. 
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6.3.1 Bayes Classifier 
 

Bayesian classifier is quite similar with the ML classifier but it also takes into 

account the cost of correct or erroneous classifications. Let’s assume that Lzy is the 

cost for wrongful classification of a sample pixel that is member of class z to class y . 

Then Lzz is actually the cost of correct classification. The Classification problem can 

be formulated as follows. Given the probabilities p xi , j / c, p c and the cost 

values Lzy then the classification for each pixel is performed by choosing the class 

that minimizes the cost. Total cost of a decision of classification in class y for a pixel 

is given by: 

K 

Ty   Lzy p z / xi , j 
z 1 

 

where K is the total number of classes. Each term of the sum is the cost Lzy scaled by 

the probability that a pixel xi , j belongs to class z . Decision function for pixel xi , j is 

based on Ty that gives the smallest value for y 1...K . Therefore we search for the 

minimum value of the sum for all y . If we implement the classifier with a 0/1 cost 

function then: 

L
zy 

0 if z  y 


if z  y  
1 

This decision rule does not assign cost to correct classification and every error that 

may happen is regarded equally important. If we actually use this decision rule, it can 

easily be proved that it is the maximum likelihood classifier. However with the 

proper choice of costs we can make rules that take into account errors in different 

ways, thus the classifier gives priority to specific classes. 

 

6.3.2 A priori Probabilities 
 

As mentioned before the a priori probabilities p c are not known in most of 

the cases, however they are needed for the ML algorithm. One method is to choose to 

ignore them and assume that all classes are equally distributed. This is an equivalent 

with a Bayesian classifier with the following cost function: 

 0 if z  y 
L

zy 

if z  y  1 

This means that actually the cost of an erroneous classification of an erroneous 
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classification of a rarely appeared class is more important than errors of other 

classes. In many software products when this algorithm is used, it is mistakenly 

called ML algorithm while it is a Bayesian classifier with the cost function given 

above. 
 

One other method to overcome this problem is a combination of two 

classification algorithms. For example Nearest Neighbor algorithms do not require a 

priori knowledge. It is therefore feasible to implement a system that exploits the 

advantages of both methods. One practical choice is to combine the two decision 

rules as presented in the following diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Combination of two classification algorithm, nearest neighbor and Maximum Likelihood 

 

Definition of “close enough” can be made with the use of standard deviations for 

each class. This means that the “close enough” rule can be expressed by the 

following inequality: 
 

xz   z   az  
 

where z and  z are the mean and standard deviation for class z . Constant  is 

defined by the designer and it is the degree of confidence to the decision made by the 

Nearest Neighbor algorithm. Moreover the results from Nearest Neighbor algorithm 

can be used to estimate a priori probabilities. 

 

6.4 Null Class 
 

Practically it is usually wise to allow the existence of a null class. The measured 

vectors of the null class are quite distant from the existing classes in the feature space 

and therefore it is not reliable to assign the corresponding pixel to any of the existing 
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classes. One common practice is to check if measurements in every band exceed the 

standard deviations of the intensities for each band multiplied by a factor. 

Let’s assume that the measured vector is x  x1 x2 ... xK T . We assume  K 
 

spectral bands and thus feature space is 
 

K  dimensional. For each class 
 

c the mean 
 

vector is given by: 
 

μc 

 

 1 

 
 2 

 

... 

 

K T 

 

while standard deviation vector is given by: 
 

σc    1 2 ... KT 

 

If a vector x is about to be assigned to class c then it is classified to null class when: 
 

x  μ c   kσ,  for every c 1...K  
 

Factor k is predefined by the designer and it usually is greater than 3. 

 

6.5 Other important classification algorithms 
 

Spectral Angle Mapper (SAM) and Spectral Correlation Mapper (SCM): 
 

SAM (Sample Angle Mapper) algorithm also treats each pixel as a vector in a K  

dimensional space where K is the number of classes of the image. Each vector has a 

specific length and direction. Vector lengths represent the brightness of the target 

while direction its spectral features. If classification is performed based on its 

direction then the algorithm is not affected from brightness variations [41]. Spectral 

signature for each pixel is now described by the angle that is formed by the 

corresponding vector with the axes in the K  dimensional space. Classification is 

performed by comparing the spectral angles of the reflectance spectrum of the pixel 

under investigation with the angles of the reference spectra of all classes. SAM 

algorithm cannot locate the difference between positive or negative correlations since 

it takes into account absolute values. Spectral Correlation Mapper can solve this 

problem. 
 

Fuzzy Logic Classification: In order to provide a complete picture of the 

available classification algorithms we will mention some popular fuzzy logic 

classifiers. Fuzzy Logic classifiers assign a set of probabilities for each pixel 

according to its tendency to belong to a class. This information can be used in a next 

step for a clearer definition of classes including cases where a pixel is considered 

mixed. There are several fuzzy logic algorithms such as: Linear Spectral Unmixing, 

Pixel Purity Index, Mixed Tuned Matched Filtering and Spectral Feature Fitting. 
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7.  Implementation   
The main effort for this study was the implementation of classification 

algorithms for hyperspectral images. Therefore several classification algorithms were 

implemented and applied to a test image that was provided. The objective of the 

study was to identify vegetated areas, urban areas, areas without vegetation (dry soil) 

and water surfaces (lakes, lagoons, rivers etc.). The application of such an algorithm 

can be of great significance: 
 

• We can track the environmental changes and study the climate effects.
• We can prevent from observation possible environmental disasters.


• We can create a database regarding the vegetation or soil types on a given 

area
 

For example we can observe if reduction of water resources is in progress. This can 

lead also to reduction of vegetation and barren soils. We can also observe the rate of 

expansion of the urban environment or monitor new buildings appearing in the 

examined area. 
 

It is clear that the importance of such a monitoring system is great for 

environmental purposes. However in this study we were not able to provide 

sophisticated algorithms that can classify different types of vegetation or land due to 

the fact that no external information for the given area was available. In order to 

implement an advanced and accurate classifier you need information about the types 

of vegetation that you can meet in the examined area, so that the training sets can be 

properly chosen. Therefore in this algorithm we tried to create basic classifiers that 

can isolate water resources, vegetated areas and urban or areas without vegetation. 

Tests were made by defining more classes (e.g. heavy vegetation – forest) but the 

classifier faced many difficulties due to the fact that with no a priori knowledge the 

training sets were chosen through visual observation and therefore the training sets 

were not completely accurate. 
 

In chapter 6, five different classification algorithms were presented. However 

four of them were selected and implemented in MATLAB. Parallelepiped algorithm 

is basically an empirical algorithm that cannot provide accurate results so it was 

decided not to implement it. The Euclidean Minimum distance algorithm is the 

easiest to understand and implement comparing with the rest of algorithms and 

therefore it was chosen as a starting point. As it will be explained it can also be used 

to implement an approximation of the ML algorithm. The main objective was the 

study of Bayes and ML algorithms. Since both these algorithms use Mahalanobis 
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distance as argument in the calculated exponent, the reasonable step were to convert 

the implemented Euclidean algorithm in order to develop Mahalanobis Miniumum 

Distance algorithm and as a second step to implement the Bayesian Classifier. The 

ML approximation algorithm proposed is a combination of the Euclidean distance 

and Bayesian algorithms. 

 

7.1 The Hyperspectral Image 
 

The provided image is a satellite image of a rural area. There are plenty of lakes and 

lagoons, most of the area is vegetated, man-made buildings and constructions are 

limited and in some areas we can also detect streets. The image does not contain 

useful information throughout its complete length, but only in a diagonal rectangular. 

A view of the area is provided in Figure 22 after we transformed the hyperspectral 

image in RGB format. The features of the provided hyperspectral image are the 

following: 
 

• It analyzes the reflected spectrum in 148 bands.
• The analyzed wavelengths span the electromagnetic spectrum from 428.9 nm 

(visible spectrum blue-violet) to 2357 nm (medium-wave infrared)


• For each band the spectrometer bandwidth is approximately 11nm. 

Bandwidth is expressed in FWHM (Full width at half maximum) and it 

indicates the spectral area where the reflectance that passes through the 

sensor filter is greater or equal to half its maximum value.
 

The image was provided in ENVI bsq format. ENVI is the most popular 

commercial software for analysis of remote sensing images and the files used from 

this software are basically the unofficially standardized file format for hyperspectral 

images. Therefore in most of the cases the hyperspectral images are given in ENVI 

file format. ENVI uses a generalized raster data format consisting of a simple flat 

binary file and a small associated ASCII (text) header file. This approach permits 

ENVI's flexible use of nearly any image format, including those with embedded 

header. The ENVI header file contains information used to read and understand a 

hyperspectral image data file. The separate ENVI text header file provides 

information about the dimensions of the image, any imbedded header if present in the 

binary file, the data format, and other pertinent information. The required information 

is entered in most cases automatically with the creation of the file. Especially in the 

case of hyperspectral images the header contains necessary information; otherwise 

the image cannot be exploited. Information about the bands, wavelengths and fwhm 

are also extracted from the header format. 
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Figure 22: View of the test hyperspectral image after RGB conversion 
 

7.1.1 ENVI Header Format 
 

The file starts with the text string ENVI and it contains some key words/properties 

followed by the values of these properties. Some of the important valid keywords are 

[77]: 
 

Description: a character string describing the image or processing performed. 
 

Samples: number of samples (pixels) per image line for each band. (X-axis) 
 

Lines: number of lines per image for each band. (Y-axis) 
 

Bands: number of bands per image file. 
 

Header offset: refers to the number of bytes of imbedded header information present 

in the main binary file (for example 128 bytes for ERDAS 7.5 .lan files). These 

bytes are skipped when the ENVI file is read. 
 

File type: refers to specific ENVI defined file types. 
 

Data type: Parameter identifying the type of data representation, e.g. if 1=8 bit byte; 

2=16-bit signed integer; 3=32-bit signed long integer; 4=32-bit floating point; etc. 
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Interleave: Refers to whether the data are band sequential (BSQ), band interleaved 

by pixel (BIP), or band interleaved by line (BIL). 
 

Sensor type: Refers to specific sensors such as Landsat TM, SPOT, RadarSat, etc. 
 

Else the sensor is marked as unknown. 
 

Byte order: Byte order=0 is Least Significant Byte First (LSF) data (MS-DOS 

systems) and byte order=1 is Most Significant Byte First (MSF) data 
 

x start and y start: Parameters define the image coordinates for the upper-left hand 

pixel in the image. 
 

Map info: Lists geographic coordinates information in the order of projection name 

(UTM), reference pixel x location in file coordinates, pixel y, pixel easting, pixel 

northing, x pixel size, y pixel size 
 

Wavelength units: Text string indicating the measurement units of the wavelengths. 
 

If the wavelength units are not given, the parameter is set to Unknown. 
 

Reflectance scale factor: The value that, when divided into your data, would scale it 

from 0 - 1 reflectance. 
 

Wavelength: lists the center wavelength values of each band in an image. Units 

should be the same as those used for FWHM and they are set in the wavelength 

units’ parameter. 
 

Fwhm: Lists full-width-half-max values of each band in an image. Units should be 

the same as those used for wavelength and set in the wavelength units parameter. It is 

a measure for sensor bandwidth per band 
 

bbl: Lists the bad band multiplier values of each band in an image, typically zero for 

bad bands and one for good bands. 
 

Data gain values: Gain values for each band. 
 

Some parts of the given header file for the specific image are presented in 

Figure 23. It must be emphasized that although the file was given in ENVI format, 

analysis and algorithm development was made with the use of MATLAB R2011a. 

ENVI is a commercial product but it is not as flexible or widespread as MATLAB. 

MATLAB provides many useful tools for efficient design of custom algorithms, it 

can be used as a powerful research tool and it is financially bearable. 
 

As a first step, two MATLAB functions were created in order to 

automatically read information from the ENVI header file. The first function 

read_info_from_header.m collects all the necessary information in order to load 

the hyperspectral image from MATLAB. The information needed was the following: 
 

a) number of samples per line b) number of lines c) number of bands d) possible 44 



 
 

 

offset in the binary file e) the used byte order in the numeric format and f) the file 

type. The function reads the text-header file, detects the specific fields from the 

keywords of the file, extracts the value for each parameter and stores the value in a 

MATLAB variable. As far as the file type is concerned it refers to the binary file 

extension and it shows the method of organizing the bands of the images. The 

possible values are BIL (Band Interleaved by Line), BIP (Band Interleaved by Pixel) 

and BSQ (band sequential) which is the simpler method. In our case the file was 

BSQ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 23: The header file from the test hyperspectral image 
 

 

7.2 Conversion to RGB 
 

All this information is used in order to open and process the file from MATLAB. 

MATLAB has an embedded function that is able to read multispectral and 

hyperspectral images. This function is called multibandread and it uses the image 

filename together with the extracted variables as input. The output is a 3D matrix 

with dimensions lines × samples × bands. In the case of the particular image the 

output of the process is a matrix with the following dimensions: 3315 1285 148. It 

can be seen that the size of the image may be extremely large and therefore the 

computer used must have plenty of available RAM to load the image. However 

MATLAB also allows us to load a specific subset of the image by defining special 

MATLAB cells as input in the function. For example the cell {'Band','Range',[1 

10]} gives the order to load only the first 10 bands of the image. More information 

can be found in MATLAB Documentation. 
 

After the image is loaded function read_wavelengths_per_band is called. 

This function loads the list of 148 wavelength centers for the bands of the sensor. We 
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also detect and read FWHM from each band as well as the normalization factor 

applied in the recorded intensities. The wavelength values are necessary for further 

processing, as well as the existence of a possible scaling factor. FWHM values were 

not used during this study however this information may be useful. 

 

7.1.2 Conversion to RGB 
 

The transformation of the image in RGB format is necessary in this study. Since we 

have no a priori information regarding the depicted area, the only way to identify and 

define the classes and set the training samples for the development of supervised 

classification algorithms is to perform a visual examination of the area. This cannot 

be done when the image is in the hyperspectral form. 
 

Generally the visible spectrum contains wavelengths from 400 to 800nm 

approximately. Since the hyperspectral image contains information from the 

wavelength=429nm we are able to use the frequency components to convert the 

hyperspectral image into a format that can be used to provide an actual perspective of 

the area. The final goal is to express the image in RGB format. 
 

However it is simpler to try and convert the image in a different color space. 

The International Commission on Illumination (CIE) has produced the CIE XYZ 

color space. RGB color space is reliable to accurately describe a color but the human 

eye does not perceive them by distinguishing primary colors. The human eye has 

photoreceptors (cone cells) for medium and high-brightness color vision and 

monochromatic night-vision receptors. In principle human eye perception can also be 

described by three parameters describing a color sensation. However the incoming 

light does not stimulate only one type of cone because the sensitivity curves overlap. 

An expression of the color as perceived by a human eye in tristimulus values was 

provided by CIE in 1931 (http://en.wikipedia.org/wiki/ CIE_1931_color_space) with 

the definition of XYZ color space. Y value means brightness while Z is quasi-equal 

to blue stimulation and X is a mixture with many red components. The CIE provided 

the color matching functions that give an estimate of the response of the XYZ 

receptors. These functions, the spectral sensitivity curves that yield the XYZ 

tristimulus values can also be used to provide the needed relationships that connect 

the intensity values per wavelength with the color space. Many different estimates of 

the spectral sensitivity curves have been expressed since then, while CIE in 1960 

defined a simple projective transformation of the tristimulus values to the RGB color 

space. 
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From the Color & Vision Research Laboratory of UCL we found proper color 

matching functions that provide look-up tables connecting the wavelengths with 

specific XYZ values according to the estimates provided by various studies (CIE 

1931, CIE 1964, Stiles and Burch). These look-up tables will provide a matching 

table for specific wavelengths and tristimulus values. As a first step we isolate the 

intensity values from the image and the center wavelengths from the bands that span 

the visible spectrum. Since the wavelength values from the look-up table are 

different from the wavelength values of the bands for the specific hyperspectral 

image, we perform interpolation to extract the XYZ values for the hyperspectral 

bands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 24: Spectral Sensitivity curves for XYZ color system 

 

However the way the image is presented depends on the source of visible 

light that radiates to the area of interest. Each source of light has a spectral power 

distribution, thus it does not transmit equal energy to all wavelengths. Different 

picture will occur for example if the image is taken in daylight or in direct sunlight 

etc. Since the remote sensing images must be comparable and we cannot ensure that 

the lighting conditions will always be the same for every given image, we can use the 

standard illuminants so that the influence of the lighting source will been relatively 

balanced and the images can be comparable. This stage is actually the pre-processing 

stage of Radiometric Calibration. Since we do not have available information about 

the lighting conditions during the time of the measurement we can test standard 

illuminants that are used as reference. Standard illuminants were extracted and 

proposed also by CIE. CIE has proposed different kind of illuminants for different 

sources of light. We decided to choose the “medium daylight” illuminant with UV 

component also known as D65. The visual result with this specific choice was the 

best possible. Once more the illuminant values for specific wavelengths were found 

from the Color & Vision Research Laboratory of UCL in the form of look-up table. 
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Interpolation was once more performed to adjust the illuminant values of the look-up 

table to the center values of the hyperspectral bands. Since we now have all the 

needed information, we can perform the RGB transformation. The first step is to 

multiply the intensity values for each pixel with the corresponding illuminant values 

for the selected source of lightning. Multiplication is performed element-wise. 

Following MATLAB notation regarding element-wise multiplication, if we assume 

that a given pixel of the hyperspectral image is represented by a num _ bands 1 

vector then after the application of the illuminants the output is given by: 
 

y hyper   I. y 
 

where I is the illuminant vector. As a next step the intensities of the image for each 

pixel and for each band are multiplied with the corresponding XYZ tristimulus 

values as occurred after the interpolation. If we assume that the output of the 

interpolation is a matrix XYZ with dimensions 3 num _ bands (in our case 3×148) 

containing all the XYZ triplets for each band and that each pixel of the hyperspectral 

image is described by a 148×1 vector, then the following product gives the XYZ 

value for the pixel: 

y
 xyz  


 

XYZ
 

y
hyper 

 
Due to the fact that the remote sensor may have performed normalization to the 

intensity values, the values depend on the sensor distance etc. the image that occurs 

may be dark. Moreover, MATLAB process images if the values of the components 

are restricted in the range [0,1]. Therefore as a final step we perform adaptation of 

the luminance of the visual target with normalization of the pixel values with the 

maximum recorded value of the XYZ triads of the image pixels. 
 

The final step is to transform the XYZ image in RGB format. This function 

(based on the CIE standards) is implemented in MATLAB. With makecform.m 

function we create a MATLAB object that transforms XYZ images to RGB and with 

we apply the transformation to the image. The result is the image presented in Figure 

22. 
 

If we want to further brighten the RGB image we can do a very simple 

transformation. In RGB images brightness is controlled by the Euclidean norm of the 

3D pixel vector. Therefore if we multiply it with a properly selected scalar value we 

can take a brighter image. This scalar factor ( a 1) can be found from the histogram 

of the image pixel norms. We can choose a value that will move the histogram to the 

right (to 1) but the pixel values will not exceed unity. In the specific image we cannot 
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find a scalar factor greater than one without exceeding unity for some pixels. 

However if we choose a 1.2 and set all the pixels exceeding 1 to unity then the 

image can be brighter with no observable distortion. 
 

This concludes the process of image transformation in RGB format. The 

procedure in Matlab code can be found in the script convert_hyper2rgb.m 

 

7.3 Data Reduction 
 

Due to the fact that the image file size is extremely large the computer used for the 

implementation needs RAM memory greater than 8 GB. In order to generate code 

that can run in computer with less RAM memory, the image dimensions were 

reduced. Particularly in the presented simulation results and the provided code, the 

first 1000 image columns and image lines from 901 to 3150 were kept. Moreover the 

number of bands was decimated by 3. Data reduction was done empirically. Simple 

observation has shown that three adjacent bands presented very similar spectra 

behavior and therefore decimation by 3 will not lead to information loss. However in 

order to produce an accurate RGB representation of the image the bands of the 

visible spectrum were not decimated initially. After the creation of the RGB 

equivalent image, the visible spectrum wavelengths were also decimated by 3. 
 

One of the targets of this project was to use PCA algorithm in order to reduce 

image dimensionality. Nevertheless due to temporal and spatial limitation this work 

was not concluded and it can be the target of future work. However the implemented 

functions that provide the PCA transformation matrices can be found in the 

Appendix. 

 

7.4 Choosing Classes and Training Sets 
 

With the creation of the RGB image we can visually examine the presented area and 

define the different classes. Since there is no a priori information visual examination 

is the only method to recognize various classes and then perform classification for 

every pixel of the hyperspectral image. However the resolution of the image is not 

high enough and we cannot observe specific details for the objects and locations 

presented. As a first step it was decided to attempt to define as many classes as 

possible. Six different classes were identified: 

- Ground with vegetation  
- Ground with light vegetation  
- Ground with no vegetation  
- Manmade construction 
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- Water resources  
- Shallow water resources 

 

The only information available for the characterization of the classes was the 

pixel colors. For example light vegetation areas had light green color and brown 

shades, areas without vegetation are brown or gray, water resources are dark green-

blue and shallow water light green-blue color. Some manmade constructions (houses, 

bridges and roads) ware on the other hand logically and visually perceived. In the 

following figures we present areas of the classes defined at the first stage. In the 

rectangular frames some examples can be seen. These pixels are not unique for each 

class (all image pixels can be classified in one class) and the frames placed in the 

figures are not completely accurate (and may contain some pixels from other 

classes). However the reader can see and understand the class distinction. If we try to 

apply classification algorithms for the six different classes many problems may 

occur. As mentioned before each class can be characterized by its spectral signature, 

which is the mean value of the intensities for the hyperspectral wavelengths. If we 

compare the estimates of the spectral signatures for the defined classes many 

problems may occur. For example the distinction between areas with light or heavy 

vegetation cannot be simply made based on the color. Some darker green locations 

present similar spectral response with the light vegetation signature, which means 

that the darker color may be the result of darker plants rather than large densities of 

trees or bushes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 25: Example of locations containing pixels of various classes 

 

Moreover the visual distinction between ground with no vegetation and man- 
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made constructions is not generally as obvious as in the examples presented in the 

figures. Finally the distinction between shallow and deep water ponds and lakes is 

not also that obvious. Thus after these observations and under the guidance of the 

supervising professor it was decided to merge classes and define three general and 

distinguishable classes: 

- Water resources (shallow or deep)  
- Areas with no vegetation (man-made or natural)  
- Areas with vegetation  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 26: Example of locations containing pixels of various classes 
 

 

The next step is the definition of the training sets in order to estimate the 

spectral signatures and the covariance matrices for each class. This is not an easy 

task at all. The reason lies on the fact that image resolution is quite low and many 

pixels are mixed. For example some pixels from the village (Figure 26) may contain 

trees ruining the computed estimate of the spectral signature; some brown colored 

pixels may contain grass or trees and the spectral signature may be similar with the 

one estimated for the “green” class. Therefore the pixels used for the estimation of 

the statistical properties of the classes must be selected so that we can be as certain as 

possible that they are in fact members of the classes. If the whole image is loaded (no 

data reduction performed!) the selected pixels of the training sets are presented in 

Table 4 (line and column of the image array). 
 

It can be noticed that the sample set for the training pixels of the class that 

represents the areas with no vegetation is quite limited. This is due to the fact that it 

is quite difficult to locate “pure” pixels for the specific class since the pixels can be 
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easily mixed with elements and materials that belong to the class representing 

vegetated areas. If we include such pixels the spectral signature seems to shift to the 

spectral signature estimated for class C and the classifier may perform poorly. 

  Pixel index - y axis (lines) Pixel index – x axis (columns) 

  From: To: From: To: 

 Class Water (A): 743 785 971 1000 

  1091 1110 695 707 

  2984 3030 272 294 

 Class No Vegetation (B): 3074 3085 55 62 

  1941 1947 665 668 

  922 928 954 956 

 Class Vegetation (C): 379 393 945 962 

  530 539 1045 1052 

  2341 2349 408 417 

  508 522 966 979 

  2327 2339 415 436 

  187 203 1064 1077 

  2182 2209 555 565 

  1751 1761 640 670 

Table 4: The training sets used for the test image 
 

7.5 Estimation of the Statistical Parameters for each Class. 
 

The next logical step is the extraction of the estimate of the spectral signature 

for each class. As mentioned before, spectral signature is the center of the class. It 

can be set following a specific rule. Usually the spectral signature is estimated as the 

ensemble average of the intensities of the training set for each hyperspectral band. 

This rule is also used in this study. Estimation of the mean value for each class will 

also be used in various classification algorithms. Therefore, if Ic the set containing 
 

the pixels of the training set for class c and yi , j the intensity values for the pixel i , j  : 
 

s c  
1  

y
 i , j  


 

mˆ
c 

 

 NIc   ( i , j )Ic 
 

where mˆc is the mean value estimate for the class which is equal to the wanted 

spectral signature and NIc is the number of pixel in the training set. A MATLAB 

figure with the estimated spectral signatures is given in Figure 27. 
 

As mentioned before the pixels for each class can be treated as random 

variables. Therefore we can also use the training set to estimate other parameters for 

the distributions of the pixels of each class. One such parameter is the variance. In 

order to calculate variances per band for each class the following estimation formula 
 

was used: σˆ c
2  

1 

 y i , j 

2 
 mˆc 2 

    

  
N

Ic  ( i , j )Ic    
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Figure 27: Estimated Spectral Signatures from the Training Set 

 
 

In Figure 28 the estimated variances per class and per band are presented as plotted 

in MATLAB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28: Estimated Variances per class and band (The colors for each curve are the same as in 

Fig. 27) 

 

The common practice is to treat the pixel vectors as multivariate Gaussian random 

variables. In this case we need also to estimate the covariance matrix for each class. 

Moreover the covariance matrix is needed for various classification algorithms 

(Maximum Likelihood, Bayes, Mahalanobis). Estimation of the matrices is calculated 

from the following formula: 
 

ˆ  1  T 
Cc    

y
 i , j 

y
i , j 

  NIc   ( i , j )Ic  
 

The results of the Covariance Matrices for each class are presented in Figure 29 as 

generated in MATLAB using the mesh function. The definition of training sets and 

calculation of the mean and covariance matrix estimates for each class is performed 
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in MATLAB by the scripts create_spectral_signatures.m and 
 

create_cov_mtx_per_class.m with the use of functions 
 

calculate_mean_spectr_signature and calculate_cov_mtx_per_class.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 29: Covariance Matrices for each class 
 
 

7.6 Classification using Euclidean Minimum Distance Algorithm 
 

The first classification algorithm that was created and tested in MATLAB 

was the Minimum Distance Algorithm. In function euc_min_distance_class 

computation of the distances of each pixel from the class centers is performed and the 

class that provides the minimum distance is selected. The algorithm may run either 

once or iteratively. Moreover there is a choice to use (or not) scaling in order to 

improve performance. 
 

Two methods of scaling were implemented in Matlab. The first method was 

named “maximum to one”. For each band the intensities of the mean spectral 

signature for all classes are compared and maximum value is used to normalize the 

measurements of the pixel values for each band. Therefore a scaling vector (with size 

equal to the number of bands) is used to scale the pixels. The vector is defined as: 
 

s k   max m 0 k ,m1 k ,...,mc k 
 

where mi is the spectral signature for class i , c is the number of defined classes, operator 

k indicates that we refer to the k  th element of the vector. Vector s is used to 

normalize pixels. Thus if zi , j is the pixel value for i , j  then the pixel vector used for 

classification is given by z i, j  z i , j . / s (element-wise division). The second 
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method uses standard deviation as a normalization factor for each band. If vector σ 

contains the standard deviation for each band and  is a multiplier selected from the 

designer then the scaled pixel is given by z i, j  zi , j . / σ . As mentioned before, 

scaling helps the performance of minimum distance algorithms since without it the 

bands where the values are smaller do not take important part in the decision process. 
 

A second issue that must be resolved concerns the definition (or not) of a null 

class. If it is decided to use a null class, the value of the parameter that separates the 

null pixels must be set. For the specific image even though it may be desired to 

classify all the pixels in one of the classes, the existence of a null class seems 

necessary in case of multiple iterations for the following reason. The image contains 

many mixed pixels especially between the classes “vegetation” and “no vegetation” 

(areas with light vegetation). The spectral response for these pixels is in between the 

spectral signatures of the classes. If during the iterations we choose not to use the null 

class then for each algorithm run all the pixels will be assigned to one of the classes. 

Assuming that half of the mixed pixels are classified in class “vegetation” and the 

other half are classified in “no vegetation” then after recalculation of the spectral 

signatures of the classes including the classified sets of pixels, the estimates for the 

two classes will be further closer together – making classification even harder and 

consequently causing classification error increase. Therefore null class plays a very 

important role so that the mixed pixels will not be taken into account when 

estimating the signatures for the next iteration. Thus if it is desired to classify all the 

pixels of the image, the null class will be overridden only during the decision of the 

last iteration and the mixed pixels will not affect the spectral signatures of the 

classes. In Euclidean minimum distance algorithm the distance that sets a pixel in the 

null class is usually provided as a multiplier of the standard deviation per band. This 

simply means that if z k  mmin,k is the distance of the pixel value of the k  th band 

from the k  th component of the spectral signature that minimized the total 

Euclidean distance mmin,k , then the pixel is NOT classified in null class if: 
  

z k   mmin,k   k , for every k  
 

Parameter  is the null class factor that defines which pixels will be considered 

distant and k is the standard deviation for the k  th band. It is self-evident that if 

scaling is used then mean values and standard deviations must be also scaled. 
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Finally it is emphasized once more that if the iterative approach is adopted 

then in each stage the spectral signatures and variances for each class must be 

estimated again using as training set the classification results of the previous step. 
 

The Matlab file that implements the Euclidean minimum distance algorithm is 

euc_min_distance_class.m. In the following figures we present results for some 

defined scenarios. For the presentation of the classification results we created a 

thematic map with 4 colors. Three different colors are used for each class (blue – 

water, green – vegetation, yellow/brown – no vegetation) and the black color is used 

to depict background pixels or pixels belonging in the null class. Classification 

results are presented in Figures 30 and 31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 30: Classification results with the Euclidean minimum distance algorithm with one iteration (all pixels 

classified and with null class) 

 

Figure 30 presents the classification results for a single run of the Euclidean 

minimum distance algorithm. In the first case all the pixels were classified in one of 

the existing classes while in the second case a null class was created to include the 

pixels that were distant from the estimated spectral values for all three classes. The 

parameter  that was selected was 3.2. It can be seen that the number of pixels 

classified in the null class is quite large. Moreover the algorithm seems to choose to 

classify mixed pixels (from “vegetation” and “no vegetation” classes) to the class 

with the largest training set, where the estimates of the spectral signatures and 

variances are quite good. Therefore the majority of mixed pixels where classified in 

“vegetation” class. 
 

In Figure 31 the algorithm ran with four iterations using a null class (with 
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  3.2 ) for all intermediate steps. The results are quite different. The number of
 

null class pixels at the last iteration is reduced (however the number is still 

remarkably large). In this case the pixels assigned in the “no vegetation” class seems 

closer to reality if we do a visual comparison with the equivalent RGB image. 

However the mixed pixels seem to be assigned mostly in the “no vegetation” class. 

This is caused from the fact that the number of training pixels sequentially increases. 

The mixed pixels contained in the training set bring the spectral signatures closer and 

the variance of the “no vegetation” class also increases. The result is that the majority 

of controversial pixels are classified as area with no vegetation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31: Classification results for Euclidean Minimum Distance Algorithm for four iterations (all pixels 

classified and with a null class) 
 

The classification results are also summarized in the following matrix: 
 

      Class “Water”  Class “Vegetation”  Class “No Vegetation”  Null  

            Class  
One iteration /all   12.17%  86.24%  1.59%  -  

 pixels             
One iteration /with 2.05% 67.83% 1.28% 28.84%  

null class            

Four iterations /all   11.98%  75.16%  12.86%  -  

 pixels             
Four iterations /with 6.38% 65.45% 9.85% 18.32%   
null class   

Table 5: Classification results for Euclidean Minimum Distance algorithm 

 

Finally the spectral signatures for each case were estimated again using the identified 

pixels and the results are presented in Figure 32 with a MATLAB plot. 
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Figure 32: Estimate of the Spectral Signatures after the use of Euclidean Minimum Distance Algorithm 

 

7.7 Classification using Mahalanobis Minimum Distance Algorithm 
 

The second classification algorithm that was created and tested in MATLAB 

was the Mahalanobis Minimum Distance Algorithm. In function 

mah_min_distance_class an implementation of the Mahalanobis Minimum 

Distance algorithm is presented. The algorithm can also be performed iteratively. A 

significant change made concerns the calculation of the distance in order to define 

thresholds for the definition of the null class. As mentioned the Mahalanobis distance 

is calculated from the metric: z  m i T Ci z mi  . If it is assumed that the pixels 

of each class follow the multivariate Gaussian distribution then it can be proved that 
 

[71] the product of the square form follows the Gamma distribution with parameters 

N
2 and 2 . The mean and variance of the gamma distribution is equal to   N and 

  

 2  2N respectively. The rule for the distinction of the null class is made according 

to the following defined rule:
 

 z  mi T Ci z  mi   N   2N    3.2 , for every class 
 

This rule is in some level equivalent with the rule for the Euclidean distance (using 

the same parameter  ). In the following figures we present results for the same 

scenarios. The black color is used to depict background pixels or pixels belonging in 

the null class. Classification results are presented in Figures 33 and 34. 
 

In Figure 33 it can be seen that when the algorithm is executed a single time 

then the number of null pixels occurred is quite large. Moreover the class with the 

smallest rate of appearance and consequently the smallest training set is generally 

ignored. If we decide to classify all the pixels then the number of “no vegetation” 
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classified pixels is increased. However, only the most representative pixels of the 

class are chosen. This is due to the fact that the estimate of the covariance matrix is 

not accurate. Moreover the pixels do not generally follow the Gaussian distribution. 

Thus application of the Mahalanobis metric is greatly dependent on the quality of the 

estimation of the covariance matrix. Small divergences may cause great errors if an 

estimate for a single channel is inaccurate. The problems are dealt in part with the 

use of iterations. This is presented in Figure 34. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33: Classification results for Mahalanobis Minimum Distance Algorithm for one iteration (all pixels 

classified and with a null class)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 34: Classification results for Mahalanobis Minimum Distance Algorithm for four iterations (all pixels 

classified and with a null class) 
 

The number of unclassified (null) pixels is radically reduced. However the 

number of pixels assigned in the “no vegetation class” is still quite low. The vast 
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majority of mixed pixels are classified to the class with the best estimation of 

covariance matrices and therefore the pixels are mainly identified as areas with 

vegetation. For example some brown colored areas in the RGB image with light 

vegetation are presented with green color in the classification map of Figure 34. 
 

It must be mentioned that Mahalanobis Minimum Distance algorithm is quite 

slower compared with the Euclidean Minimum Distance algorithm when the 

MATLAB scripts run at the same computer system. This was expected since the 

computation of Mahalanobis Distance is performed by the product of a N  N matrix 

with a N 1vector from the left (transposed vector) and right. The algorithm is also 

slower after a single iteration is completed since it is required to calculate a new 

estimate not only for the spectral signatures (common step with the Euclidean 

Distance) but also for the covariance matrix. However the cost paid in computational 

complexity does not seem to provide any profit in the case of this image where a 

class (“no vegetation”) consists of a small number of pixels and the estimations of the 

statistical parameters cannot be accurate. 
 

The classification results are also summarized in the following matrix: 
 

     

Class “Water” 

 

Class “Vegetation” 

 

Class “No- Vegetation” 

 

Null Class 

 

         
  One iteration /all   6.52 %  90.58%  2.91%  -  

  pixels           

  One iteration  2.44% 55.42% 0.04% 42.1%  

  /with null class           

  Four iterations   7.94%  88.03%  4.03%  -  

  /all pixels           

  Four iterations  2.47% 67.88% 0.92% 24.47%  

  /with null class           
Table 6: Classification results for Mahalanobis Minimum Distance algorithm 

 

Finally the signatures for each case were estimated again using the identified pixels  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 35: Estimates of the Spectral Signatures after the use of Mahalanobis Distance Algorithm 
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7.8 Classification using Bayes Classification Algorithm 
 

It must be clarified that since the term “Bayesian Estimator” can be applied in 

many cases, the Bayes Classification Algorithm that is implemented is based on the 

description given in paragraph 6.3.1. This algorithm therefore performs classification 

based on estimations of conditional probabilities without any knowledge of the a 

priori probabilities which express the incidence of a pixel of each class. As 

mentioned in 6.3.1, this algorithm assumes that the a priori probabilities are all equal 

for all classes and therefore classification is performed based on the conditional 

probability that a given pixel is a member of a class. The pixel is assigned to the 

class that maximizes this probability. In function bayes_class an implementation of 

the Bayesian classification algorithm is presented. 
 

It was made clear that both the assumptions that were made previously are 

not quite accurate. The class “vegetation” in the specific image is dominant and 

therefore the actual a priori probabilities are quite unequal. Particularly the 

probability of appearance of a pixel from “no-vegetation” class is very small. 

Moreover the Bayesian algorithm assumes multivariate Gaussian distributions which 

are not also very accurate. However from the results presented in Figures 36 and 37 

it is concluded that the algorithm performs extremely well if we visually compare the 

color classification maps and the RGB image. 
 

As far as the null class is concerned we can use threshold probability values 

to separate pixels that are quite distant from the spectral signatures of reference from 

all the classes. For the presented simulation results this threshold was chosen to be 

  0.15 . This means that if a pixel cannot be assigned to a class with probability
 

greater than 15% (based on the assumed distributions) then the pixel is classified as 

null. The rule that defines which pixel is assigned to the null class is described by: 
 

p  i / z   , for every class i 
 

The results presented in Figure 36 indicate a great improvement in 

comparison with the two previous classification algorithms as far as the reduction of 

the null class pixels. A very small number of pixels are unclassified after a single run 

of the algorithm. However a closer look can reveal that if we choose to classify all 

pixels in one of the three defined classes’ then some clear classification errors may 

occur. For example in the area around pixels (x = 450, y =950) the set of pixels that 

are classified as null in the right subfigure are wrongfully classified as “water” pixels 

if it is decided to assign all pixels in a class. This error is a consequence of the fact 
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that distribution parameters are inaccurate for a small training set and that the a priori 

probabilities are unknown. This problem is however avoided if more iteration is 

performed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 36: Classification Results for the Bayesian Classification with one iteration (all pixels classified 

and with null class) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37: Classification Results for the Bayesian Classification with four iterations (all pixels 

classified and with null class) 
 

As presented in Figure 37 the algorithm seems to work exceptionally well. 

The number of null class pixels is reduced even more and the classification result 

seems to be extremely accurate with a visual comparison of the color map with the 

actual RGB image. The algorithm seems to have no bias towards a class as far as the 

mixed pixels are concerned. The mixed pixels are fairly divided between “no-

vegetation” and “vegetation” classes and the color map is actually a very good 
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representation of the actual image. The number of “no-vegetation” pixels is increased 

with iterations as expected but not so much that it would lead to erroneous 

classification. The pixels of the “water” class are also very accurately determined. 

However a small bias towards to the class with the smallest a priori probability can 

be observed. 
 

Since the calculation of the conditional probability demands the calculation 

of the Mahalanobis distance it is also clear that this algorithm is slower than the 

Euclidean Distance Algorithm. The additional complexity comparing with the 

Mahalanobis algorithm (calculation of the exponents) is very small and therefore the 

two algorithms have almost the same performance. Moreover the Bayes 

classification algorithm has no gain from the scaling procedure and therefore we can 

save computational time if the scaling step is disregarded. 
 

The classification results are also summarized in the following matrix: 
 

     Class “Water”  Class  Class “No- Vegetation” Null Class  

       “Vegetation”      
 One iteration   8.33%  88.82%  2.85%  -  

 /all pixels           

 One iteration  7.65% 87.49% 2.35% 2.52%  

  /with null class           

 Four iterations   9%  81.72%  9.28%  -  

 /all pixels           

 Four iterations  8.93% 81.68% 8.92% 0.47%  

  /with null class            
Table 7: Classification results for Bayes classification algorithm 

 

Finally the spectral signatures for each case were estimated again using the identified 

pixels: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38: Estimates of Spectral Signatures after the use of a Bayesian Classifier 
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7.9 Classification using an ML Approximation Algorithm 
 

The last algorithm that was implemented in MATLAB was an approximation of 

the Maximum Likelihood classification algorithm. In paragraph 6.3 it was 

highlighted that in order to use the ML algorithm, the a priori probabilities must be 

known. Since it is not possible to know a priori probabilities in most of the cases 

(such as in the test image used), an approximation of the ML algorithm was created. 

This was done in two basic steps: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 39: The ML Approximation Algorithm 

 

The first algorithm used is the Euclidean Minimum Distance algorithm with a single 

iteration. Null class was used and the a priori probabilities were estimated based on 

the following formula: 
 

  number of pixels classified in i class pˆ i  
number of pixels classified in any class (except null) 

 

Euclidean Minimum Distance algorithm is fast and it can provide a relatively 

realistic approximation of the a priori probabilities. In any case the estimates are 

more reliable than the use of equal probabilities as in Bayes Classification. 
 

Then the ML Algorithm was used (implemented in mle_class function) to 

definitively assign the pixels in classes. The use of iterations was also provided. For 

each iteration the a-priori probabilities were calculated along with the needed 

statistical parameters. The algorithm is the same with the Bayes classifier with the 

only difference that instead of using p i / zto make the decision p  i / z pˆ  i is 

used. The same change is applied also to the rule that defines the null class. The 

results are presented in Figures 40 and 41. 
 

It is clear that there is improvement in any case. With a single run almost all 

the null class pixels can be eliminated, no significant classification errors are made 
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and if we decide to assign all the pixels in one of the classes, the result is very 

satisfactory. The classification results are improved with the use of iteration in the 

second step of the algorithm. A visual comparison to the RGB image shows that the 

results are exceptionally accurate. The number of “no-vegetation” areas is slightly 

reduced comparing with the Bayesian classifier due to the use of the a priori 

probabilities but in this case this fact is an improvement since the Bayesian classifier 

even though it is quite fair, it has a small bias to the rarely appearing classes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 40: Classification Results for the ML Approximation with one iteration (all pixels classified and 

with null class) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 41: Classification Results for the ML Approximation with two iterations (all pixels 

classified and with null class 

 

It must be emphasized that we only used two iterations (instead of 4) to achieve this 
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result. The classification results are also summarized in the following matrix: 
 

  Class “Water” Class “Vegetation” Class “No- Vegetation” Null Class 

 One iteration /all 8.25% 88.91% 2.83% - 

 pixels     

 One iteration 7.58% 87.58% 2.32% 2.53% 

 /with null class     

 Two iterations 8.56% 87.38% 4.06% - 

 /all pixels     

 Four iterations 8.39% 87% 4.01% 0.59% 

 /with null class     
Table 8: Classification results for ML approximation algorithm 

 

Finally the spectral signatures for each case were estimated again using the identified 

pixels: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 42 Estimates of Spectral Signatures after the use of ML approximation 

 

An example of the way classification works can be seen by a histogram of values for 

the intensities of the pixels that are assigned in the three classes. In this histogram we 

isolated only a single band in 1711nm. It is obvious that the main problem is the 

mixed pixels between class “vegetation” and “no vegetation”. However if we 

consider e.g. 50 histograms of this kind (one per band), the conditions for correct 

classification are quite satisfactory. 
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8.  Conclusions   
During the preparation and writing of this dissertation the basic concepts and 

principles of spectroscopy and remote sensing were studied. The state of the art in 

Hyperspectral imaging was analyzed and a process was developed in order to extract 

and use information from satellite hyperspectral images. 
 

The result of this study was the MATLAB implementation of four classification 

algorithms in order to identify areas from satellite images based on their 

environmental features. We were able to identify areas with water resources, 

vegetation as well as dry soil or urban/suburban environment. The importance of this 

work is self-evident as these algorithms could be used to monitor the environmental 

and climatic changes. The four classification algorithms used were a) Euclidean 

Minimum Distance, b) Mahalanobis Minimum Distance c) Bayesian Classifier and 
 

d) an approximation of the Maximum Likelihood Classifier. The conclusions that can 

be derived by the application of the algorithms are the following: 
 

- Euclidean Minimum Distance algorithm is the fastest but it is not so accurate. It 

produces relatively good results and it is able to distinguish areas with clear 

features (e.g. water resources). It has a bias towards the classes with well-defined 

training sets when much iteration is used.  
- Mahalanobis Minimum Distance algorithm was slightly disappointing. Although 

the computational workload was increased it its outperformed by the Euclidean 

Minimum Distance algorithm. This was caused by the fact that the algorithm 

needs good estimates based on the training samples and the “no-vegetation” 

samples in our case were limited in number.  
- Bayesian algorithm worked very well. It was relatively fair regarding the mixed 

pixels and the results were very accurate. A small bias towards the class with the 

smallest number of pixel was shown due to the fact that there is no knowledge of 

a priori probabilities. However the algorithm was stable and reliable.  
- A Maximum Likelihood Approximation algorithm was developed. First a single 

run of Euclidean Minimum Distance algorithm was executed in order to estimate 

the a priori probabilities and then these estimates were used to an ML classifier. 

The results were exceptionally accurate, reliable and unbiased. The algorithm 

outperforms all the others and it has an additional example. It needs less iteration 

to achieve better results and therefore it may be faster than the Bayesian and 

Mahalanobis classifier. 
 

The spectral signatures were also estimated for the defined classes. If ML 

approximation algorithm is chosen then estimates of the spectral signatures can be 

seen in Figure 42. The results seem very accurate if we compare it with the results in 

[51], [54] and [66]. The results are practically identical if we use a normalization 
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factor. Moreover if we examine the figure from [51] it can be concluded that the 

vegetated areas have trees, grass or crops with fresh leafs. As far as the spectral 

signature for dry soil is concerned it is concluded that during the application of the 

algorithm and the incorporation of mixed pixels the spectral signature tends to a 

similar shape with the one of the vegetated areas with greater intensity values in 

wavelengths greater than 1500nm. 
 

Further work could include the use of different images with higher resolution in 

order to distinguish more classes, application of more advanced classification 

algorithms, and reduction of data using feature extraction methods. In fact PCA 

algorithm was developed but no results were extracted due to temporal and spatial 

limitations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 43: Results from [51] regarding leaf biochemistry 
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MATLAB References for code from other sources: 
 

• illuminant
• colorMatchFcn 

The  functions  were  taken  from  Color  &  Vision  Research  Laboratory  of  UCL. 

http://cvrl.ioo.ucl.ac.uk. Reader may find the functions in the given link. 

 

Also in order to write the following code, ideas, tips, tricks and code advices were 

used by the following resources: 
 

- R. Gonzalez and R. Woods, S. Eddins, “Digital Image Processing Using 

MATLAB”, Prentice Hall  
- Tutorial on transforming hyperspectral images (http://personalpages.manc 

hester.ac.uk/staff/david.foster/Tutorial_HSI2RGB/Tutorial_HSI2RGB.htm l).  
- Matlab Newsgroup (e.g. http://www.mathworks.co.uk/ 

matlabcentral/newsreader/ view_thread/169432 )  
- Stackoverflow (e.g. http://stackoverflow.com/questions/8108905/matlab-

covariance-matrix-computation-for-different-classes)  
- Matlab FileExchange Server and particularly the following submissions:  
o Variational Bayesian Inference for Gaussian Mixture Model by Mo 
Chen o Data matrix whitening by Colorado Reed 

 
o Image Seqmentation by Abioye Samson 

o Kernel PCA by Ambarish Jash  
o  Introduction to Classification by Richard 

 

and of course MATLAB Help by Mathworks. 
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Appendix: Matlab Scripts and Functions  
 

• convert_hyper2rgb.m

 
This script reads a hyperspectral image and converts it to RGB: 

 
% Image Name and folder: 

 
Two string variables are defined: folder_name and file_name. Variable folder_name contains the path to the 

image and files folder and file_name contains the image name without file extension 

folder_name = 'C:\Users\User\Desktop\hyper_spectral\';  
file_name = 

'EO1H1890172010184110KC_167_spcmm_atm_polish_smcorr_ortho_scaled'; 

 
The two variables are merged with strcat: 

 
fname = strcat(folder_name, file_name); 

 
read_info_from_header is called with fname as input. This function returns the necessary data to call matlab 
function multibandread. Output: samples is the number of pixels per image line, lines the number of lines, bands 
is the number of bands, offset is a variable that indicates if a header offset is kept in the image file, ftype is the 
image file type (bil, bip or bsq) and byte_order shows if the most significant bit is in the start or the end of each 
image byte. 

 
% Read info from header:  
[samples, lines, bands, offset, ftype, byte_order] = 

read_info_from_header(fname); 

 
read_wavelengths_per_band is called with fname as input. It reads the wavelengths for each band from the header 
file. Wavelengths are in micrometers. Also FWHM for each band is read and also some other variables (dgv and 
ref_sc_fact) that indicates if the reflectances in the image files are normalized by a factor or not. 

 
[wavelengths, fwhm, dgv, ref_sc_fact] = read_wavelengths_per_band(fname); 

 
Wavelengths are converted to nanometers with a multiplication by 1000. 

 
% wavelengths are(?) in micrometers: do it nano: 
wavelengths = 1000*wavelengths; 

 

% In order to go to RGB isolate the bands that are in the visible spectrum 

 
A new vector is defined to store the band wavelengths with values less than 830. 

 
% define a visible wavelength vector (from the measured wavelengths: 
visible_waves = wavelengths(wavelengths<=830); % wavelengths < than 830nm 

 
Then all the wavelengths with values greater than 380 nm are kept. This is the visible spectrum. 

 
visible_waves = visible_waves(visible_waves>=380); % wavelengths> than 380nm 

Three matlab cells are defined that specify which subset of the image will be kept. 
 

%% Set Image ranges of interest: 

 

%% Define a subset of image Rows-Columns that will be read: 
% Line subset: 

 
subset_lines is the cell variables defined as specified in multibandread. Parameter ‘Range’ specifies that all lines 
from first_line to end_line will be read. 

 
first_line = 901; 

end_line = 3150; 

subset_lines = {'Row','Range',[first_line end_line]}; 
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The same is defined for the column subset to be kept. 

 
% Sample subset: 
first_sample = 1; 

end_sample = 1000;  
subset_samples =  {'Column','Range',[first_sample end_sample]}; 

 
For the subset of bands variable parameter ‘Direct’ is used. This means that multibandread will keep the bands 
with the indexes contained in the provided vector choose_bands. This vector occurs by keeping all the 
wavelengths in visible spectrum and by decimating by dec_factor all other wavelengths. 

 
% Bands subset: 

dec_factor = 3; 

choose_bands = [(1:length(visible_waves)) 
 

(length(visible_waves)+2:dec_factor:length(wavelengths))]; 

subset_bands = {'Band','Direct',choose_bands}; 

 
We adjust the wavelengths variable to contain only the bands kept. 

 
% Adjust wavelengths:  
wavelengths = [wavelengths(1:length(visible_waves)); 

wavelengths(length(visible_waves)+2:dec_factor:end)]; 

 
multibandread is called with all the data defined previously. The hyperspectral image is kept in Z 3D matrix 

 
%% Read Image:  
Z = multibandread(strcat(fname,'.',ftype), [lines, samples, bands], 

'single', offset, ftype, byte_order, subset_samples, subset_lines, 

subset_bands); 

 
Then image conversion to RGB is performed: 
%% Convert to RGB: 

 
clorMatchFcn is a function found in Matlab FileExchange from Computer Vision laboratory of UCL. It is a look-
up table. As input a specific string is provided with the name of the look-up table to be used. The tables are 
provided by CIE standards. The output is a set of wavelengths in lambda variable and three valued xFcn, yFcn 
and zFcn which are the color values of the wavelength in XYZ color format. 

 
%% Create/load a vector that provides the relationship between wavelengths 
and Colors in XYZ Format 

[lambda, xFcn, yFcn, zFcn] = colorMatchFcn('1931_full'); 

 
Since lambda and wavelengths do not contain the same wavelength values interpolation is performed to estimate 
X,Y,Z values for wavelengths. Function interp1 is used with interpolation method ‘pchip’ (piecewise cubic). 

 
% From vector lambda with interpolation, find the XYZ colors that  
% correspond to the wavelengths in the visible_waves (coming from hdr file): 
XYZ = interp1(lambda', [xFcn; yFcn; zFcn]', visible_waves, 'pchip', 0); 

 
illuminant is also a function from UCL. It is also a look-up table of the standardized by CIE illuminants. Input is 
a string that specifies the type of assumed lighting. ‘D65’ is used that corresponds to medium daylight (logical 
assumption for satellite image). In the vector energy the illuminant values for wavelength values lambda are kept. 

 
%% Radiometric Calibration through illuminants: 

% Since the source (sun) does not transmit equally to all bands then we 
% will use a standard pattern of flux distribution provided as an 
% illuminant: 

 

% Choose illuminant pattern: 
illuminant_ptrn = 'D65';  
% Create illuminants for lamda wavelengths: 
[lambda, energy] = illuminant(illuminant_ptrn); 

 
Once again interpolation is performed for the illuminants of visible_waves vector. 
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% Find illuminant values through interpolation for the wavelengths of the 
% given band:  
energy_new = interp1(lambda, energy, visible_waves, 'pchip',0); 

 
% Apply the illuminant to the matrix, for each band: 

 
Illuminants are applied. A new matrix Y is initialized with size equal to the visible spectrum 

 
Y = zeros(size(Z,1),size(Z,2),length(visible_waves)); % initialize array 

 
For every wavelength of the visible spectrum we find the index in wavelengths vector and we multiply all 
elements of Z in the specific band with the illuminant. Result is stored in Y 

 
for ii = 1:length(visible_waves)  

ind = find( wavelengths == visible_waves(ii)); 

Y(:,:,ii) = Z(:,:,ind)*energy_new(ii);  
end 

 
% Initialize matrix to store XYZ image: 

 
The size of Υ (r rows- c columns w-width (bands)) 

 
[r c w] = size(Y); 

 
With reshape function all the pixels are put in a sequential order and matrix Y is converted to 2D 
Y = reshape(Y, r*c, w); 

 
Hyperspectral image is converted to XYZ by matrix multiplication. The intensities for each band are multiplied 
with corresponding XYZ values (in matrix XYZ) and then summed to give a total resultant. This is the pixel color 
in XYZ. 

 
% Apply the XYZ colors for each band and multiply with reflectance: 
Y = (XYZ'*Y')'; 

 
Matrix Y is reshaped in the image shape and stored in X 

 
X = reshape(Y, r,c,3); 

 
Values XYZ of MATLAB must be from 0 to 1. The values from the previous multiplication may be greater than 
1 because the intensity values may be normalized by a factor. Normalization is performed: 

 
% Normalize matrix to fix luminosity: 

 
In case there are negative values, those are zeroed: 

 
X = max(X,0); 

 
max(X(:)) calculates the maximum value of the 3D matrix and the elements are normalized: 

 
X = X/max(X(:)); 

 
Function MATLAB makecform creates a MATLAB struct that can be used to transform an image from XYZ to  
RGB format. Application of the transform is done by applycform function. sRGB stores the image: 

 
%% Convert image from XYZ format to RGB from Matlab functions: 
XYZ2sRGB = makecform('xyz2srgb'); 

sRGB = applycform(X, XYZ2sRGB); 

 
% Show image (in RGB): 
imshow(sRGB); 

 
Finally the bands of the visible spectrum are also decimated by dec_factor. The result is stored in a file. 
% Save results to matrices:  
Z = Z(:,:,[(1:dec_factor:length(visible_waves)) 

length(visible_waves)+1:end]); 
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wavelengths = wavelengths([(1:dec_factor:length(visible_waves)) 

length(visible_waves)+1:end]);  
save('image_matrices.mat', 'Z', 'wavelengths') 

 
 

MATLAB Functions for Reading the Image: 
 

• read_info_from_header:
 

Function reads useful information from header file: 
 

function [samples, lines, bands, offset, ftype, byte_order] = 

read_info_from_header(fname) 

 
 

strcat(fname,’.hdr’) puts extension hdr in a file. fileread puts a text file in a string variable (named text) 
 

text = fileread(strcat(fname, '.hdr')); 

 
strfind finds the starting index of the first appearance of word (‘samples’) 

 
samp_ind = strfind(text, 'samples'); 

 
The text segment from variable text from samp_ind + length('samples') + 3 to samp_ind 

+length('samples') + 8 is isolated. The word samples is bypassed and 3 more symbols (‘ = ‘) 

 
samples = text(samp_ind + length('samples') + 3 : samp_ind 

+length('samples') + 8); 

 
Since it is not known from the beginning when the sample number ends, the symbols are read one by one and 
with the use of parameter (‘digit’) in matlab function isstrprop it is concluded that a symbol is a digit or not. 
When the loop ends ii variance contains the index of the last digit +1. 

 
ii = 1; 

while isstrprop(samples(ii), 'digit') 

ii = ii + 1; 

end 

 
Samples 1 to ii-1 contain the wanted sample number. Function str2double translates the isolated string to number: 

 
samples = str2double(samples(1:ii-1)); 

 
The exactly same procedure is used to find the number of lines: 

 
lines_ind = strfind(text, 'lines');  
lines = text(lines_ind + length('lines') + 5 : lines_ind + length('lines') + 

10); 

ii = 1; 

while isstrprop(lines(ii), 'digit') 

ii = ii + 1; 

end 

lines = str2double(lines(1:ii-1)); 

 
The exactly same procedure is used to find the number of bands: 

 
bands_ind = strfind(text, 'bands');  
bands = text(bands_ind + length('bands') + 5 : bands_ind + length('bands') + 

10); 

ii = 1; 

while isstrprop(bands(ii), 'digit')  
ii = ii + 1; 

end 

bands = str2double(bands(1:ii-1)); 
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The image file may contain some header bytes. The number of those bytes is stored in the header file in header 
offset field. This value is extracted and stored to variable offset 

 
offset_ind = strfind(text, 'header offset'); 

offset = text(offset_ind + length('header offset') + 3 : offset_ind + 

length('header offset') + 8); 

ii = 1; 

while isstrprop(offset(ii), 'digit') 

ii = ii + 1; 

end 

offset = str2double(offset(1:ii-1)); 

 
Three text samples are identified after the field ‘interleave’ that contains the file type. Three possible values: BIP, 
BIL and BSQ. This string is stored in variable ftype: 

 
ftype_ind = strfind(text, 'interleave');  
ftype = text(ftype_ind + length('interleave') + 3 : ftype_ind + 

length('interleave') + 5); 

 
The byte order variable specifies the byte ordering (machine format) in which the data is stored. If it is 0 then the 
byte ordering format is IEEE little endian and the value ‘ieee-le’ is stored. If it is 1 then the byte ordering format 
is big endian and the value ‘ieee-be’ is stored: 

 
byte_order_ind = strfind(text, 'byte order'); 

byte_order = str2double(text(byte_order_ind + length('byte order') + 3 : 

byte_order_ind + length('byte order') + 4));  
if byte_order == 0 

byte_order = 'ieee-le'; 

else 

byte_order = 'ieee-be'; 

end 
 

• read_wavelengths_per_band
 

This function extracts the central wavelengths for each band and other information 

 
function [wavelengths, fwhm, dgv, ref_sc_fact] = 

read_wavelengths_per_band(fname) 

 
strcat(fname,’.hdr’) adds the extension and fileread stores the header file in a string variable 

 
% Input: Filename with no extension 
text = fileread(strcat(fname, '.hdr')); 

 
Function strfind finds the string (‘wavelength = {’) contained in text variable. 

 
% Find the word 'wavelength = '  
start_ind = strfind(text, 'wavelength = {'); 

% then find } 

 
Then the index where character } is found: 

 
stop_ind = strfind(text(start_ind + length('wavelength = {') :end), '}'); 

 
In variable wavelengths all the content between { and } is stored: 

 
% Throw away anything not important - keep only numbers:  
wavelengths = text(start_ind + length('wavelength = {') + 1 : start_ind + 

length('wavelength = {') + stop_ind(1)); 

 
Matlab function textscan scans the defined text segment and creates a matrix A. In this case the string segment 
contains numbers (floats ‘%f’ parameter) that are delimited by comma (delimiter parameter is ,). The result in A 
is the passed to variable wavelengths. 

 
% Transform the string to vector using , as delimiter: 
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A = textscan(wavelengths, '%f', 'delimiter',',' 

); wavelengths = A{1}; 

 
Same procedure is followed for fwhm. FWHM is actually an equivalent of the bandwidth for each image band. 

 
% Find the word 'fwhm = ' 

start_ind = strfind(text, 'fwhm = {');  
stop_ind = strfind(text(start_ind + length('fwhm = {') :end), '}'); 

% Use the same method to construct the fwhm vector:  
fwhm = text(start_ind + length('fwhm = {') + 1 : start_ind + length('fwhm 

= {') + stop_ind(1));  
A = textscan(fwhm, '%f', 'delimiter',',' ); 

fwhm = A{1}; 

 
The same procedure is followed for data_gain_values. Data gain values is a field containing numbers that 
multiply the intensities for each band. It does some kind of scaling if data gain values are different for each band. 

 
% Find the word 'data gain values = ' 

start_ind = strfind(text, 'data gain values = {');  
stop_ind = strfind(text(start_ind + length('data gain values = {') :end), 

'}'); 

% Use the same method to construct the dgv vector:  
dgv = text(start_ind + length('data gain values = {') + 1 : start_ind + 

length('data gain values = {') + stop_ind(1));  
A = textscan(dgv, '%f', 'delimiter',',' ); 

dgv = A{1}; 

 
Finally the set of words ‘reflectance scale factor’ is found. This is a scalar value that normalizes the intensities for 
all the bands. 

 
% Find the word ''reflectance scale factor ' 

start_ind = strfind(text, 'reflectance scale factor = ');  
ref_sc_fact = text(start_ind + length('reflectance scale factor = ') : 

start_ind + length('reflectance scale factor = ') -1 + 9);  
% Use the same method to construct the ref_sc_fac vector: 
ii = 1; 

while isstrprop(ref_sc_fact(ii), 'digit') || strcmp(ref_sc_fact(ii), '.') 

ii = ii + 1; 
end 

ref_sc_fact = str2double(ref_sc_fact(1:ii-1)); 

 

 

Matlab Script to calculate spectral signatures and covariance matrices from 

training set: 

• create_spectral_signatures.m

 
This script estimates the spectral signatures, the mean intensities for each band and each class. Training sets are 

defined in order to proceed with estimation. Training sets were chosen by visual examination. One or more areas 

with e.g. water pixels were selected in rectangular forms. 
 

The first defined class is “water” with pixels from areas with water resources: 
 

%% CLASS 1: Water class (train set): 
% x-axis coordinates (column) 

 
Two matrices Xwater and Ywater are define. Xwater, Ywater are 3x2 matrices. Each line of Xwater and Ywater 

defines a rectangular. For example a rectangle starting from column 971 to 1000 and from line 743 to 785 is 

defined first. Inside these rectangular shapes, the training set pixels are contained. 

Xwater = [971 1000; 695 707; 272 294];  
% y-axis coordinates (line) 

Ywater = [743 785; 1091 1110; 2984 3030]; 

% This means that e.g. the rectangular with columns 734 until 785 and lines 
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% 971 to 1000 contains pixel from the specific class... 

 
Based on the coordinates of the rectangles an Nx2 matrix is defined containing the Χ and Υ coordinated for all the 

pixels of the training set. This is done with function find_pixel_coords_from_rects 
 

% Create a matrix with the coordinates of all the pixels in the 
class: water_pixels = find_pixel_coords_from_rects(Xwater, Ywater); 

 
Since we now have all the pixels containing in the training set, the spectral signatures can be calculated with the 

function calculate_mean_spectr_signature with inputs: image Z, X coordinates of the training set, Y coordinates 

of the training set. In variable water the spectral signature is stored while in water_var the variance per band for 

the specific class is stored. 

% Calculate mean reflectance spectrum for the pixels of the class:  
[water, water_var] = calculate_mean_spectr_signature(Z, water_pixels(:,1), 

water_pixels(:,2)); 

 
The exact process if followed for class “vegetation”: 

 
%% CLASS 2: Vegetation: 
% x-axis coordinates  
Xgreen = [945 962; 1045 1052; 408 417; 966 979; 415 436; 1064 1077; 555 

565;640 678;]; 

% y-axis coordinates  
Ygreen = [379 393; 530 539; 2341 2349; 508 522; 2327 2339; 187 203; 2182 

2209; 1751 1761;]; 

 
% Create a matrix with the coordinates of all the pixels in the 
class: green_pixels = find_pixel_coords_from_rects(Xgreen, Ygreen); 

 

% Calculate mean reflectance spectrum for the pixels of the 1st training set 
for the class:  
[green, green_var] = calculate_mean_spectr_signature(Z, green_pixels(:,1), 

green_pixels(:,2)); 

 
The exact process if followed for class “no vegetation”: 

 
%% CLASS 3: No vegetation 

 
% x-axis coordinates (column) 
Xland = [55 62; 665 668;954 956]; 

% y-axis coordinates (line) 
Yland = [3074 3085; 1941 1947;922 928]; 

 
% Create a matrix with the coordinates of all the pixels in the 
class: land_pixels = find_pixel_coords_from_rects(Xland, Yland); 

 

% Calculate mean reflectance spectrum for the pixels of the 1st training set 
for the class:  
[land, land_var] = calculate_mean_spectr_signature(Z, land_pixels(:,1), 

land_pixels(:,2)); 

 
In order to have a single variable for the spectral signatures all the results are stored in a 3x(number of bands) 

matrix where 3 is the number of defined classes. 
 

%% Create a single matrix to store the Spectral signatures: 
spec_signatures = [water; green; land]; 

var_signatures = [water_var; green_var; land_var;]; 

 
A matrix with the classes’ names is created: 

 
class_names = [{'water'}; {'green'}; {'land'};]; 

 
A figure is created to present the estimated spectral signatures for all classes: 

 
%% Create Figure: 
figure1 = figure; 
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% Create axes 

axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on'); 

box(axes1,'on'); 

hold(axes1,'all');  
% Create multiple lines using matrix input to 
plot plot1 = plot(wavelengths,[water; green; 

land;],'Parent',axes1,'LineWidth',2);  
% Create xlabel 
xlabel({'Wavelengthts(nm)'},'FontSize',14); 

% Create ylabel 

ylabel({'Reflectance'},'FontSize',14); 

% Create legend 

 
set(plot1(1),'DisplayName','Water'); 

set(plot1(2),'DisplayName','Vegetation'); 

set(plot1(3),'DisplayName','No Vegetation'); 

 
legend1 = legend(axes1,'show'); 

set(legend1,...  
'Position',[0.755092592592593 0.743335951819847 0.134722222222222 

0.153508771929825]); 

 
The sequence of commands for the creation of plot was extracted by the “Generate M-file” option of the 

MATLAB figure. 

• create_cov_mtx_per_class.m

 
This script extracts the covariance matrices for each class. Covariance matrices are used from Mahalanobis and 

Bayes algorithms. The computation is based on the given training set for each class and a big part of the script is 

very similar with the create_spectral_signatures script. 

%% IDENTIFY DIFFERENT CLASSES AND EXTRACT SPECTRAL SEQUENCES 

 
All about the rectangles that contain the training set pixels for a class are mentioned in script 
create_spectral_signatures 

 
%% CLASS 1: Water class (train set): 
% x-axis coordinates  
Xwater = [971 1000; 695 707; 272 294]; 

% y-axis coordinates 

Ywater = [743 785; 1091 1110; 2984 3030]; 

 
Similarly with create_spectral_signatures the matrix with all the pixels of the class is created: 

 
% Create a matrix with the coordinates of all the pixels in the 
class: water_pixels = find_pixel_coords_from_rects(Xwater, Ywater); 

 
Now the covariance matrix for each class can be calculated from the function calculate_cov_mtx_per_class with 

input Z (the image), X (x-axis coordinates for the training set, 1
st

 column of water_pixels), Y (y-axis coordinates 

for the training set, 2
nd

 column of water_pixels) and the spectral signature (mean values per band) for the specific 

class. In cov_water the covariance matrix is stored. 
 

% Calculate covariance matrix for the pixels of the class: 
cov_water = calculate_cov_mtx_per_class(Z, water_pixels(:,1), 

water_pixels(:,2), spec_signatures(1,:)); 

 
The same procedure is followed for “vegetation” class: 

 
%% CLASS 2: GREEN 

% x-axis coordinates  
Xgreen = [945 962; 1045 1052; 408 417; 966 979; 415 436; 1064 1077; 555 565; 

640 678]; 

% y-axis coordinates 
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Ygreen = [379 393; 530 539; 2341 2349; 508 522; 2327 2339; 187 203; 2182 

2209; 1751 1761]; 

 
% Create a matrix with the coordinates of all the pixels in the 
class: green_pixels = find_pixel_coords_from_rects(Xgreen, Ygreen); 

 

% Calculate covariance matrix for the pixels of the class:  
cov_green = calculate_cov_mtx_per_class(Z, green_pixels(:,1), 

green_pixels(:,2), spec_signatures(2,:)); 

 
The same procedure is followed for “no-vegetation” class: 

 
%% CLASS 3:NO VEGETATION 
% x-axis coordinates  
Xland = [55 62; 665 668;954 956]; 

% y-axis coordinates 

Yland = [3074 3085; 1941 1947;922 928]; 

 
% Create a matrix with the coordinates of all the pixels in the 
class: land_pixels = find_pixel_coords_from_rects(Xland, Yland); 

 

% Calculate mean reflectance spectrum for the pixels of the 1st training set 
for the class:  
cov_land = calculate_cov_mtx_per_class(Z, land_pixels(:,1), 

land_pixels(:,2), spec_signatures(3,:)); 

 
The number of classes is: 

 
%% Create a single matrix to store the Spectral signatures: 
num_classes = 3; 

 
In order not to have different variables for the covariance matrix of each class a 3D matrix is defined. The first 

dimension of the new matrix is the index of each class. Therefore cov_matrices has dimensions 

(num_classes)x(number of bands)x(number of bands). E.g. in cov_matrices(1,:,:) the covariance matrix for 

“water” class is contained. 

cov_matrices = zeros(num_classes, size(Z,3), size(Z,3)); 
 

cov_matrices(1,:,:) = cov_water; 

cov_matrices(2,:,:) = cov_green; 

cov_matrices(3,:,:) = cov_land; 
 

Matlab Functions to calculate spectral signatures and covariance matrices from 

training set: 

• find_pixel_coords_from_rects.m
 

 
As mentioned in create_spectral_signatures Xclass and Yclass variables are Νx2 matrices where N is the number 

of rectangles used as a training set for a class. This function’s objective is to create a (number of pixels)x2 matrix 

with the coordinates of all training set pixels. 

function pixel_coords = find_pixel_coords_from_rects(Xclass, Yclass) 

 
% This function extracts the coordinates for all the pixels inside a 
% rectangular. 
% Input contains the coordinates for rectangular. The rectangulars contain 
% a set of pixels that belong to a class training set 

 

% Input is a Nx2 Xclass and a Nx2 Yclass matrix where N is the number of 
% rectangulars 

 
Number of rectangles is equal with the number of Xclass (or Yclass) lines: 
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% Check if the input dimensions are correct 
N = size(Xclass,1); 

 
A check is performed in order to examine if Xclass and Yclass dimensions are compatible. 

 
if size(Yclass,1)~=N || size(Xclass,2)~=2 || size(Yclass,2)~=2 

error('X, Y have not the proper dimensions')  
end 

 
The initially empty matrix pixel_coords will contain the indexes (coordinates) of the training set pixels. 

 
pixel_coords =[]; 

 
% For each rectangular defined from Xwater, Ywater do: 

 
For every rectangle do: 
for k = 1 : size(Xclass,1)  

% For all the pixels from column Xwater(k,1) to Xwater(k,2) do: 

 
For every pixel of column Xclass(k = current rectangle,1) and till Χclass (k,2) do: 

for ii = Xclass(k,1) : Xclass(k,2)  
% For all the pixels from line Ywater(k,1) to Ywater(k,2) do:  

For every pixel of line Yclass(k = current rectangle,1) and till Yclass (k,2) 
do: for jj = Yclass(k,1) : Yclass(k,2) 

 
Store the specific pixel’s coordinated as a new line in pixel_coords variable: 

 
pixel_coords = [pixel_coords; ii jj]; 

end 

end 

end 

• calculate_mean_spectr_signature.m

 
This function calculates the spectral signatures (means per band) for the training sets of each class. Input is:  
Z(hyperspectral image), X (x-axis coordinates), Y(y-axis coordinates for the pixels). 

 
function [spec_signatures, variance_per_band] = 

calculate_mean_spectr_signature(Z, X, Y) 

 
% This function calculates the mean spectral signature based on a training 
% set provided by the user 
% Input: 
% Z = the hyperspectral image 

% X = a Nx2 vector. It gives the x-axis coordinates for the training set 

% N is the number of pixels of image used for the training set 

% Y = the y-axis coordinates 

 
 

The numbers of pixels that take part in the computation of the spectral signature are equal to the number of lines 
of X (or Y). 

 
% number of pixels: 
N = size(X,1); 

 
Two line vectors are initialized with num. of bands elements. 

 
% Initialize matrices to store the variables: 
spec_signatures = zeros(1, size(Z,3)); 

variance_per_band = zeros(1, size(Z,3)); 

 
For each pixel do: 

 
for ii = 1 : N 

% Calculate mean reflectance spectrum for the pixels of the class: 
% Also calculate the variance... 
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The isolated pixel has coordinates Y(ii), X(ii). It is emphasized that X axis are the 2
nd

 dimension (columns) of a 
matlab matrix. Variable tmp is squeezed from 1x1x(num. of bands) to 1x(num. of bands) . Transpose operator ‘ 
transforms tmp in (num. of bands)x1. 

 
tmp = squeeze(Z(Y(ii), X(ii), :)).'; 

 
The band values for each pixel are summed in vector spec_signatures after they are normalized by the number of 
pixels N in the training set. The result is the desired mean value: 

 
spec_signatures = spec_signatures + tmp/N; 

 
Variance is given by the formula Ε(x^2)-(E(x))^2. First the mean value for the squared intensities for each band 
is calculated. This is done similarly with before. Every squared value is divided with N and added to 
variance_per_band. The final result will be Ε(Ζ.^2). 

variance_per_band = variance_per_band + tmp.^2/N; 

end 

 
Since variance is given by Ε(Ζ^2)-(E(Ζ))^2 the squared value of the mean (spectral signature) must be subtracted. 

 
% To calculate the variance we must subtract the square of mean 
value: variance_per_band = variance_per_band - spec_signatures.^2 

 

• calculate_cov_mtx_per_class.m

 
This function calculates the covariance matrices for each class for a given training set. Inputs are: Z (the 
hyperspectral image), X the x-axis coordinates for the pixels of the training set, Y the y-axis coordinates of the 
pixels and means – the spectral signature of the specific class. 

 
function cov_mtx = calculate_cov_mtx_per_class(Z, X, Y, means) 

 
% This function calculates the covariance matrix per class based on a 

training set provided by the user 

% Input: 
% Z = the hyperspectral image 

% X = The coordinates in x-axis of the training set 

% Y = The coordinates in y-axis of the training set 

 
The output matrix is initialized with zeros and dimensions (number of bands) x (number of bands) 
cov_mtx = zeros(size(Z,3), size(Z,3)); 

 
A counter is also initialized at zero. This counter will count the processed pixels. 
counter = 0; 

 
For each pixel of the training set do: 
for ii = 1 : length(X) 

 
Pixel Ζ(Υ(ii), X(ii),:) is isolated. This matrix has 1x1x(number of bands) dimensions. In order to be used in 
matrix multiplications the matrix is squeezed to (number of bands)x1. Estimation of the covariance matrix for a 

vector z with mean m is performed by the following formula: 

E 
       

T  
 


 


 


 

T 

          

 


 


 


 z m z m    

z m z m     
N         for all pixels      

Since the vector is (num of bands)x1 then after the multiplication the resulted matrix has dimensions (num of 
bands)x(num of bands). Since means is a line vector we use ‘operator to transpose. The multiplication result is  

stored in matrix tmp z  m z mT
 for each pixel.  

 
tmp = (squeeze(Z(Y(ii), X(ii), :))-means')*(squeeze(Z(Y(ii), 

X(ii), :))-means')'; 

 
tmp is added in cov_mtx which is initially zero. The results from all pixels are cumulated to 

cov_mtx. cov_mtx = cov_mtx + tmp; 
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For each pixel processed, the counter is increased by one. 

counter = counter + 1;  
end  
According to the formula the covariance matrix is estimated as a mean value so it must be divided by the number 
of pixels 

 
cov_mtx = cov_mtx/counter; 

 

 

Matlab Functions used before classification: 
 

• find_im_limits.m

 
As seen the processed MATLAB image is diagonal. Therefore a big part of the loaded image does not contain 

useful information and it is a background with zeros for all bands. It is not desired to process and classify those 

pixels and therefore the pixel indexes for each line that contains useful information are extracted. 

function lim_x = find_im_limits(Z) 

 
% Since the image is diagonal, we find the actual pixels of the image in 
% order to ignore the black background during classification: 

 
In variable Y we store the number of lines of matrix Z (lines of the image). A (number of lines)×2 matrix is 
initialized. lim_x will contain the indexes of useful information pixels per line. 

 
Y = size(Z,1); 

lim_x = zeros(Y,2);  
% Sum the absolute values of the intensities for all bands... 
% If the sum is non-zero, then the pixel contains info 

 
The absolute value of the intensities for all bands is taken and then the sum for each pixel is calculated. Matrix Z 
that occurs has dimensions (num. lines)×(num. columns). If a pixel is in the background then the sum is also zero 
(as a sum of zeros). 

 
Z = sum(abs(Z),3); 

 
For each line of the image, function find is used to find the pixel positions with non-zero sum of absolute values. 
The result is contained in vector ind. The first element indicates the position of the first information pixel and the 
last the position of the last information pixel of the line: 

 
for ii = 1 : Y 

ind = find(Z(ii, :) >0); 

 
First it is checked if no non-zero pixels are found: 

if ~isempty(ind)  
lim_x(ii,1) = ind(1); 

lim_x(ii,2) = ind(end);  
else 

 
If vector ind is empty then we put the values 1 and 0 for the starting and ending position. Since 0<1 when the 
specific values are used, no pixel of the image will be selected. 

 
lim_x(ii,1) = 1; 

lim_x(ii,2) = 0; 

end 

end 

 

• scaling_hyp_image.m

 
Scaling is performed by function scaling_hyp_image. Inputs are: the spectral signatures for all classes, variances 

per band for all classes and string “method” that defines the method used for scaling. 
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In matlab, varargin is a special structure used for variable length of input arguments. When it is used it means that 

one or more input arguments may or may not exist. In this case it means that the input arguments must be at least 

3. 

function [scaled_signatures, scaled_vars, scaled_vect] = 

scaling_hyp_image(spec_signatures, var_signatures, method, varargin) 

 
% A function that scales the bands of a hyperspectral image, so that all 
% the bands have the same influence for minimum distance algorithms: 

 
%% Normalize by setting to 1 the maximum value for each band: 

 
Two methods are defined. If we compare the string method with ‘max2one’ and the result is true: 

 
if strcmp(method, 'max2one') 

 
Method max2one finds the maximum value of intensity in every band for each class. With the use of max 
MATLAB function a vector scaled_vect (1x (num. bands)) is defined that will be used for normalization 

 
scaled_vect = max(spec_signatures); 

 
Normalization is performed with scaled_vect for all classes (a matrix with 3x(num bands) dimensions is created 
with the use of matlab function repmat) 

 
scaled_signatures = spec_signatures./repmat(scaled_vect, 

size(spec_signatures,1), 1); 

 
Variable scaled_signatures stores the spectral signature for a scaled image with vector scaled_vect. In order to 
calculate the variances for the scaled image, normalization must also be performed but in this case with square 
scaled_vect: 

 
scaled_vars = var_signatures./repmat((scaled_vect).^2, 

size(spec_signatures,1),1); 

 
elseif strcmp(method,'var') 

 
The second method of scaling is based in variance (‘var’). In this case scaling for each band is done with the 
maximum variance of each band. Usually a multiplier is also used in order to create a normalization factor of the   

following form: a 2 where  2 is the variance and a the multiplier. Thus for ‘var’ method a fourth input is 
necessary. In this point matlab reads the fourth input from varargin and it stores it in variable alpha. 

 
alpha = varargin{1}; 

 
If there is no fourth input, MATLAB produces an error. 

if isempty(varargin)  
error('If using var method for scale, you must also give an alpha 

factor') 

end 

 
In this case the scaling vector per band occurs from the maximum value of variance of all classes per band 

multiplied by factor alpha. Then the squared root of the vector is taken a 2 

  
scaled_vect = sqrt(max(alpha*var_signatures)); 

 
 

Computation of scaled signatures and scaled variances is performed with the same procedure as in ‘max2one’ 
method. 

 
scaled_signatures = spec_signatures./repmat(scaled_vect, 

size(spec_signatures,1),1);  
scaled_vars = var_signatures./repmat((scaled_vect).^2, 

size(spec_signatures,1),1); 

end 
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Matlab Functions used for classification: 
 

• euc_min_distance_class.m

 
This function is an implementation of the Euclidean Minimum Distance classification algorithm. Inputs: 

 
Z: the hyperspectral image 

 
class_centers: the spectral signatures without scaling, (num classes)x(num bands) 

 
var_classes: the variances per band for each class without scaling 

 
num_iter: the number of iterative runs that will be executed 

 
lim_x : the matrix that contains the information pixels for each image line with dimensions (number lines)x2 

 
null_class_factor: This factor defines the rule according to which a given pixel is classified to a null class or not. 

For this algorithm is a scalar value. If the distance from all means for each band is less than this value multiplied 

by standard deviation then this pixel is assigned to a class or else it is classified as null. If no null class is wanted 

then null_class_factor = inf 
 

assign_all_pix: It is a flag. It can be either 1 or 0. 
 

varargin: It is used if it is necessary to load more inputs in the function. If scaling is performed then two extra 

inputs must be assigned. Else no extra input is necessary. 

 
function [Zmap Zclass] = euc_min_distance_class(Z, class_centers, 

var_classes, num_iter, lim_x, null_class_factor, assign_all_pix, varargin) 

 
% Number of classes: 

 
The number of classes is the first dimension of class_centers: 

 
num_classes = size(class_centers, 1); 

% Check if scaled data are used or not: 

 
If varargin is not an empty cell (~ =not isempty) then do: 

 
if ~isempty(varargin) 

 
In this case scaling is used. As 8

th
 input the scaling vector scaled_vect is used. This is the 1

st
 element of 

varargin % If scaled:  
scaled_vect = varargin{1}; 

 

The 9
th

 input is the method used for scaled_vect (max2one or var) 
method = varargin{2}; 

 
If scaling is used then class_centers and var_classes are recalculated for every class. First two matrices in the 
same dimensions (scaled_vect and scaled_vars) are initialized as zero matrices. 

 
% Recalculate class centers and class variances: 
scaled_centers = zeros(size(class_centers)); 

scaled_vars = zeros(size(var_classes)); 

 
For every class do:  

for kk = 1: num_classes % Do this for each 

class % Rescale center:  
The spectral signature is recalculated by dividing class_centers with scaled_vect element-wise 

 
scaled_centers(kk,:) = class_centers(kk,:)./scaled_vect; % 

Rescale variance (must divide with squared scaled_vect) 

 
Similarly var_classes are divided by squared scaled_vect: 

scaled_vars(kk,:) = var_classes(kk,:)./(scaled_vect.^2);  
end 

 
else 
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If varargin is empty then no scaling is used and thus scaling_vect is a vector of ones. Variables scaled_centers 
and scaled_vars are the same with class_centers and var_classes. 

 
scaled_vect = ones(1, size(Z,3)); 

% Since no scaling is used, scaled centers and vars are equal with the 
% original: 
scaled_centers = class_centers; 

scaled_vars = var_classes; 

end 

 
% Calculate pixel number, by finding how many pixels there are in each row 
% and then sum the useful pixels: 

 
With the use of lim_x the total number of useful pixels is calculated. E.g. for the ii-th line the useful pixels are the 

difference of the 2
nd

 column of the ii-th line from the 1
st

 column of the same line. Vector ((lim_x(:,2) - 
lim_x(:,1)+1))is the information pixels per line. With sum function the total number of useful pixels is 
calculated: 

 
pixel_number = sum((lim_x(:,2) - lim_x(:,1)+1)); 

 
Then pixels are isolated from the 3D matrix Z and a new 2D matrix is created with line number equal with the 
number of useful pixels and columns the number of bands. It is initialized with zeros. 

 
% Put all the useful pixels in a sequential row 
Znew = zeros(pixel_number, size(Z,3)); 

 
A counter is defined. Initialized as 1: 
counter = 1; 

 
For every image line do: 
for k = 1 : size(Z,1) 

 
Pixels of the k-th line with information pixels are isolated with the use of lim_x matrix. Counter in each step of 
the loop defines the index in Znew where the useful pixels are placed. For k=1 pixels are placed from 1 to 
lim_x(1,2)-lim_x(1,1) +1 . 

 
Znew(counter : counter + lim_x(k,2) - lim_x(k,1),:) = Z(k, 

lim_x(k,1):lim_x(k,2),:); 

 
Then the counter increases so that the pixels of the next iteration are placed in the correct place. For example for 

the 2
nd

 iteration the index for the first new pixel is lim_x(1,2) - lim_x(1,1)+2 
 

counter = counter + lim_x(k,2) - lim_x(k,1) + 1; 

end 

 
Variable changed_pix is used when more than a single run is performed, num_iter >1. In case there is no change 
in the classification of a pixel from iteration to another, there is no need to continue the iterative loop. For the first 

run, changed_pix is set to one in order to perform the first (and last) execution of the algorithm. 
 

changed_pix =1; 

 
A matrix with size (number of pixel)x1 is initialized to store the classification results.  
% Initialize Zclass to classify pixels 
Zclass = zeros(size(Znew,1),1); 

 
Also a matrix with size (number of lines)x(number of columns) is initialized. The classification results will also 
be stored in it. This matrix is actually a visual map for the pixels in image dimensions. The values of Zclass and 
Zmap are 1 for “water”, 2 for “vegetation”, 3 for “no vegetation” and 0 for null (if used). 

 
% Initialize Zmap to store the classes: 
Zmap = zeros(size(Z,1), size(Z,2)); 

 
A counter that counts the number of iterations performed is initialized as one. 
counter = 1; 
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As long as pixels are changing classes and counter is less than num_iter do: 
while (changed_pix ~= 0) && counter<=num_iter 

 
In case this is not the first iteration the previous classification result is stored in 

Zclass_old if counter>1  
Zclass_old = Zclass; 

end 

 
For each pixel do: 

for ii = 1 : pixel_number 

 
Euclidean distance for pixel with values Znew(ii,:) is calculated after it is properly scaled with a division with 
scaled_vect. Euclidian distance is the sum of squared differences of the scaled pixel from the scaled spectral 
signatures for each class. In order to do that in a single step, Znew(ii)./scaled_vect is repeated 3 time (in 3 rows, 
function repmat) and is subtracted from scaled_center variable. 

 
% Calculate distance from centers:  
distance = sum(abs(repmat(Znew(ii,:)./scaled_vect, num_classes, 1) - 

scaled_centers).^2,2); 

 
By calling the min function the class is found by the second output ind which class minimizes the Euclidean 
distance (1, 2 or 3) 

% Find the minimum:  
[min_value,ind] = min(distance); 

 
A check is performed if the condition for null class classification is valid. 

% Check if a pixel is in null class or not  
Differences from Minimum distance are recalculated: 

check_dist = (Znew(ii,:)./scaled_vect - scaled_centers(ind,:)); 

 
If the absolute value for each element of check_dist is smaller than null_class_factor*sqrt(scaled_vars(ind,:)) then 
the pixel is not in the null class. Each element is compared with the threshold. If the sum is equal to zero it means 
that for all bands the condition is satisfied. If it is greater than zero then the pixel is a null class pixel. 

 
if sum(abs(check_dist) > null_class_factor*sqrt(scaled_vars(ind,:))) 

> 0 

 
Pixel is classified as null: 

Zclass(ii) = 0; 

 
In case the last iteration is performed (counter == num_iter) and the flag assign_all_pix is 1 then null 

class is not used and all pixels are assigned. The final result will not contain null pixels (except of the 
background). 

 
if assign_all_pix == 1 && (counter == num_iter)% if we want to 

assign all the pixels in the final step.... 

Zclass(ii) = ind; 

end 

else  
If all band distances are smaller than null_class_factor*sqrt(scaled_vars(ind,:))) then pixels are classified 
normally: 

Zclass(ii) = ind;  
end 

 
end 

 
If we are in iteration greater than the first: 

if counter>1 

 
The number of changed classification results is calculated by the difference Zclass_old - Zclass and check if the 
result is difference than zero. The summation of the check results is the number of changed pixels. 

 
changed_pix = sum((Zclass_old - Zclass ~=0));  

The result is shown in the command window: 
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display(changed_pix) 

end 

 
The results of Zclass are placed in Zmap matrix in order to reshape the map as an image.  
A new counter is defined, counter2.  

% Create class map: 
counter2 = 1; 

 
For each image line till size(Z,1) do: 

for k = 1 : size(Z,1) 

 
Pixels are positioned in Zmap in the place they were taken from Ζ. It is an inverse procedure of the one creating 
Zclass vector. 

 
Zmap(k, lim_x(k,1):lim_x(k,2)) = Zclass(counter2 : counter2 + 

lim_x(k,2) - lim_x(k,1),:);  
Variable counter2 increases so that each pixel of Zclass is placed in the correct line and column. 

counter2 = counter2 + lim_x(k,2) - lim_x(k,1) + 1; 

end 

 
Classification is completed and counter is increased by one. 

counter = counter + 1; 

 
Assuming that classification is done correctly the spectral signatures are recalculated. 

% Recalculate spectral signatures  
class_vars = zeros(num_classes, size(Z,3)); 

 
For each class: 

for k = 1 : num_classes  
Find the pixels assigned to class k: 

[ind1 ind2] = find(Zmap == k);  
% Calculate mean reflectance spectrum for the pixels of the 1st 

training set for the class:  
Call calculate_mean_spectr_signature to re-estimate spectral signature where (ind2, ind1) are (x,y): 

[tmp,tmp2] = calculate_mean_spectr_signature(Z, ind2, ind1); 

 
The results are placed in the proper rows of class_centers and 

class_vars. class_centers(k,:) = tmp; 
class_vars(k,:) = tmp2;  

end 

 
If varargin is not empty (scaling) then the new scaling vector scaled_vect must be calculated: 

if ~isempty(varargin)  
Υπολογίζω τις τιμές για μετά το scaling:  

[scaled_centers, scaled_vars, scaled_vect] = 

scaling_hyp_image(class_centers, class_vars, method); 

end 

 
If counter is less than num_iter then classification is performed again with the new spectral signatures. 

 
end 

 

• mahal_min_distance_class.m

 
This function is an implementation of the Mahalanobis minimum distance algorithm. Only the differences 

regarding the implementation of the Euclidean distance algorithm are presented. 
 

1
st

 Difference: Instead of the variances as input the covariance matrices for each class is used (cov_matrices)  
function Zmap = mahal_min_distance_class(Z, class_centers, cov_matrices, 

num_iter, lim_x, null_class_factor, assign_all_pix, varargin) 

 
% Number of classes: 

num_classes = size(class_centers, 1); 
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% Check if scaled data are used or not: 
if ~isempty(varargin) 

% If scaled: 
scaled_vect = varargin{1}; 

method = varargin{2}; 

 
% Recalculate class centers and class variances: 
scaled_centers = zeros(size(class_centers)); 

scaled_vars = zeros(size(class_centers)); 

 
for kk = 1: num_classes % Do this for each 

class % Rescale center: 

scaled_centers(kk,:) = class_centers(kk,:)./scaled_vect;  
% Rescale covariance matrix ( = A*C*A where A 

= diag(1./scaled_vect)) 

 

2
nd

 Difference: Instead of scaling the variances, the covariance matrix is getting scaled. According to theory of 
covariance matrices this is done as follows: Vector 1./scaled_vect is becoming diagonal (function diag) and 
multiplies covariance matrix (tmp) from left and right. 

tmp = squeeze(cov_matrices(kk,:,:));  
tmp = diag(1./scaled_vect)*tmp*diag(1./scaled_vect); 

cov_matrices(kk,:,:) = tmp; 

 

3
rd

 Difference: Scaled variances can be found in the diagonal of the covariance matrix. 
% Scaled variance is the diagonal of the covariance 

matrix: scaled_vars(kk, :) = diag(tmp); 

end 

else 

scaled_vect = ones(1, size(Z,3));  
% Since no scaling is used: 
scaled_centers = class_centers; 

end 

 
% Calculate pixel number, by finding how many pixels there are in each row 
% and then sum the useful pixels: 
pixel_number = sum((lim_x(:,2) - lim_x(:,1)+1)); 

 
% Put all the useful pixels in a row  
Znew = zeros(pixel_number, size(Z,3)); 

counter = 1; 

for k = 1 : size(Z,1)  
Znew(counter : counter + lim_x(k,2) - lim_x(k,1),:) = Z(k, 

lim_x(k,1):lim_x(k,2),:); 

counter = counter + lim_x(k,2) - lim_x(k,1) + 1; 

end 

 
changed_pix =1; 

 
% Initialize Zclass to classify pixels 
Zclass = zeros(size(Znew,1),1);  
% Initialize Zmap to store the classes: 
Zmap = zeros(size(Z,1), size(Z,2)); 

 
counter = 1;  
while (changed_pix ~= 0) && 

counter<=num_iter if counter>1  
Zclass_old = Zclass; 

end 

for ii = 1 : pixel_number  
% Calculate Mahalanobis distance 

distance = zeros(num_classes,1); 

4
th

 Difference: Since each class has its own covariance matrix a loop is created to calculate Mahalanobis distance. 
 

for jj = 1 : num_classes 

% Invert the Covariance matrix: 
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5
th

 Difference: Each covariance matrix is loaded in variable tmp. Since tmp is 1x(num_bands)x(num_bands) it is 
squeezed to (num_bands)x(num_bands): 

 
tmp = (squeeze(cov_matrices(jj,:,:)))^-1; 

% Calculate distance from centers: 
 

6
th

 Difference: Mahalanobis Distance. This is: ( z  m)T
 C1

 ( z m)  
For each pixel the mean value is subtracted and the covariance matrix is multiplied from right and left (in 
transpose). But first scaling is performed: 

 
distance(jj) = (Znew(ii,:)./scaled_vect - 

scaled_centers(jj,:))*tmp*(Znew(ii,:)./scaled_vect - scaled_centers(jj,:))'; 

end  
% Find the minimum: 
[~,ind] = min(distance); 

 
end 

 
% Check if a pixel is in null class or not  

The minimum Mahalanobis distance is recalculated:  
tmp = (squeeze(cov_matrices(ind,:,:)))^-1; 

check_dist = (Znew(ii,:)./scaled_vect -  
scaled_centers(ind,:))*tmp*(Znew(ii,:)./scaled_vect - 

scaled_centers(ind,:))'; 

 

7
th

 Difference: In Euclidean distance null_class_factor is a multiplier of the variance for each band. In this case 

null_class_factor is the exact threshold defining the Mahalanobis Distance that classifies a pixel to null. The way 
it is defined can be found in the proper chapter of the dissertation.  

if sum(sqrt(abs(check_dist)) > null_class_factor) > 0 

Zclass(ii) = 0; 

% Define intermediate classes?  
if assign_all_pix == 1 && (counter == num_iter)% if we want to 

assign all the pixels in the final step....  
Zclass(ii) = ind; 

end 

else 

Zclass(ii) = ind; 

end 

 
if mod(ii, 1000)==0 

display(ii) 

end 

end 

if counter>1  
changed_pix = sum((Zclass_old - Zclass 

~=0)); display(changed_pix)  
end 

 
% Create class map: 
counter2 = 1; 

for k = 1 : size(Z,1) 

Zmap(k, lim_x(k,1):lim_x(k,2)) = Zclass(counter2 : counter2 + 

lim_x(k,2) - lim_x(k,1),:); 

counter2 = counter2 + lim_x(k,2) - lim_x(k,1) + 1; 

end 

counter = counter + 1; 

 
class_vars = zeros(num_classes, size(Z,3));  
% Recalculate spectral signatures 
for k = 1 : num_classes 

[ind1 ind2] = find(Zmap == k); 
 

% Calculate mean reflectance spectrum for the pixels of the 1st 
training set for the class:  

[tmp,~] = calculate_mean_spectr_signature(Z, ind2, 

ind1); class_centers(k,:) = tmp; 
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8
th

 Difference: After re-estimating the spectral signature based on the classification results, a new covariance 
matrix is also estimated from calculate_cov_mtx_per_class function. 

 
tmp = calculate_cov_mtx_per_class(Z, ind2, ind1, tmp); 

cov_matrices(k,:,:) = tmp; 

class_vars(k,:) = diag(tmp); 

end 

if ~isempty(varargin)  
[scaled_centers, scaled_vars, scaled_vect] = 

scaling_hyp_image(class_centers, class_vars, method); 
 

9
th

 Difference: Scaling is also applied to the covariance matrix estimates. 
for kk = 1 : num_classes 

tmp = squeeze(cov_matrices(kk,:,:));  
tmp = diag(1./scaled_vect)*tmp*diag(1./scaled_vect); 

cov_matrices(kk,:,:) = tmp; 

end 

end 

end 

 

• bayes_class.m

 

The function implements the Bayes classification algorithm. Inputs: 
 

Z: the hyperspectral image 
 

class_centers: the spectral signatures without scaling, (num classes)x(num bands) 
 

var_classes: the variances per band for each class without scaling 
 

num_iter: the number of iterative runs that will be executed 
 

lim_x : the matrix that contains the information pixels for each image line with dimensions (number 

lines of image)x2 
 

null_class_prob: The value provided is not a distance value or a multiplier of the variance but a 
 

probability. It defines that if the probability a pixel to be a part of a class is less than this threshold 
 

(assuming the Gaussian distribution and estimates are accurate) then the pixel is classified as null. In 
 

this case a value in the area of 0.1-0.15 was used. 
 

assign_all_pix: It is a flag. It can be either 1 or 0. 
 

No varargin is used since there is not a reason to use scaling. 
 
 

function Zmap = bayes_class(Z, class_centers, cov_matrices, 

num_iter, lim_x, null_class_prob, assign_all_pix) 

 

The number of classes is the first dimension of class_centers: 
 

num_classes = size(class_centers, 1); 

 
With the use of lim_x the total number of useful pixels is calculated. E.g. for the ii-th line the useful 

pixels are the difference of the 2
nd

 column of the ii-th line from the 1
st

 column of the same line. 
Vector ((lim_x(:,2) - lim_x(:,1)+1))is the information pixels per line. With sum 
function the total number of useful pixels is calculated: 

 
pixel_number = sum((lim_x(:,2) - lim_x(:,1)+1)); 

 

Then pixels are isolated from the 3D matrix Z and a new 2D matrix is created with line number equal 
with the number of useful pixels and columns the number of bands. It is initialized with zeros. 

 
% Put all the useful pixels in a row 
Znew = zeros(pixel_number, size(Z,3)); 
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A counter is defined. Initialized as 1: 
counter = 1; 

 

For every image line do: 
for k = 1 : size(Z,1) 

 

Pixels of the k-th line with information pixels are isolated with the use of lim_x matrix. Counter in 
each step of the loop defines the index in Znew where the useful pixels are placed. For k=1 pixels are 
placed from 1 to lim_x(1,2)-lim_x(1,1) +1 . 

 
Znew(counter : counter + lim_x(k,2) - lim_x(k,1),:) = Z(k, 

lim_x(k,1):lim_x(k,2),:); 

 

Then the counter increases so that the pixels of the next iteration are placed in the correct place. For 

example for the 2
nd

 iteration the index for the first new pixel is lim_x(1,2) - lim_x(1,1)+2 
 

counter = counter + lim_x(k,2) - lim_x(k,1) + 1; 

end 

 

Variable changed_pix is used when more than a single run is performed, num_iter >1. In case there is 
no change in the classification of a pixel from iteration to another, there is no need to continue the 

iterative loop. For the first run, changed_pix is set to one in order to perform the first (and last) 
execution of the algorithm. 

 
changed_pix =1; 

 

A matrix with size (number of pixel)x1 is initialized to store the classification results.  
% Initialize Zclass to classify pixels 
Zclass = zeros(size(Znew,1),1); 

 

Also a matrix with size (number of lines)x(number of columns) is initialized. The classification results 
will also be stored in it. This matrix is actually a visual map for the pixels in image dimensions. The 

values of Zclass and Zmap are 1 for “water”, 2 for “vegetation”, 3 for “no vegetation” and 0 for null 
(if used). 

 
% Initialize Zmap to store the classes: 
Zmap = zeros(size(Z,1), size(Z,2)); 

 

A counter that counts the number of iterations performed is initialized as one. 
counter = 1; 

 

As long as pixels are changing classes and counter is less than num_iter do: 
 

while (changed_pix ~= 0) && counter<=num_iter 

 
In case this is not the first iteration the previous classification result is stored in Zclass_old 

if counter>1  
Zclass_old = Zclass; 

End 

 

For each pixel do: 
for ii = 1 : pixel_number 

 
Vector probability with number of elements equal to the number of classes is initialized. In each 

element the probability the pixel (Ζ(y,x,:)) belongs to a class is stored. For example 1
st

 element will 

store the probability the pixel belongs to the 1
st

 class. 
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probability = zeros(num_classes,1); 

 

For each class the probability is calculated: 
for jj = 1 : num_classes 

 

Each covariance matrix is loaded in variable tmp. Since tmp is 1x(num_bands)x(num_bands) it is 
squeezed to (num_bands)x(num_bands):  

tmp = (squeeze(cov_matrices(jj,:,:))); 

% Calculate distance from centers: 

 

Assuming that pixels are multivariate Gaussian random variables, the probability the pixel is member 

of a class is calculated by the formula: p 

1 
    


z  m T C 

1
 z m  

   

e 

2 

with m the spectral signature 

     

2
  

 

  

C    
            
for each class. 

 
probability(jj) = (1/2/pi)*sqrt(1/det(tmp))*exp(-

(Znew(ii,:) - class_centers(jj,:))*(tmp^-1)*(Znew(ii,:) - 

class_centers(jj,:))'/2);  
end 

 

The class that maximizes the probability is found using max function from the second output 
argument ind. 

% Find the maximum:  
[max_value,ind] = max(probability); 

 
If this probability is less than a threshold probability value the pixel is assigned to null class. 

if max_value < null_class_prob  
Zclass(ii) = 0; 

 

In case the last iteration is performed (counter == num_iter) and the flag assign_all_pix is 1 

then null class is not used and all pixels are assigned. The final result will not contain null pixels 
(except of the background).  

if assign_all_pix == 1 && (counter == num_iter)% if 

we want to assign all the pixels in the final step....  
Zclass(ii) = ind; 

end 

else 

 

If the probability is less than null_class_prob then pixels are classified normally: 
Zclass(ii) = ind; 

end 

end 

 

If we are in iteration greater than the first: 
 

if counter>1 

 

The number of changed classification results is calculated by the difference Zclass_old - Zclass and 
check if the result is difference than zero. The summation of the check results is the number of 

changed pixels. 

 
changed_pix = sum((Zclass_old - Zclass 

~=0)); display(changed_pix)  
end  

The results of Zclass are placed in Zmap matrix in order to reshape the map as an image. 

A new counter is defined, counter2. 
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% Create class 
map: counter2 = 1; 

 

For each image line till size(Z,1) do: 
 

 
for k = 1 : size(Z,1) 

 

Pixels are positioned in Zmap in the place they were taken from Ζ. It is an inverse procedure of the 
one creating Zclass vector. 

 
Zmap(k, lim_x(k,1):lim_x(k,2)) = Zclass(counter2 : 

counter2 + lim_x(k,2) - lim_x(k,1),:); 

 

Variable counter2 increases so that each pixel of Zclass is placed in the correct line and column. 
 

counter2 = counter2 + lim_x(k,2) - lim_x(k,1) + 1; 

end 

 

Classification is completed and counter is increased by one. 
counter = counter + 1; 

 

Assuming that classification is done correctly the spectral signatures are recalculated. For each class:  
% Recalculate spectral signatures 
for k = 1 : num_classes  

Find the pixels assigned to class k: 
[ind1 ind2] = find(Zmap == k); 

 

Call calculate_mean_spectr_signature to re-estimate spectral signature where (ind2, ind1) are (x,y)  
% Calculate mean reflectance spectrum for the pixels of the 1st 

training set for the class:  
[tmp,~] = calculate_mean_spectr_signature(Z, ind2, ind1); 

 
The result is placed in the proper row of class_centers 

class_centers(k,:) = tmp; 

 

Covariance matrices are also re-estimated by calculate_cov_mtx_per_class function:  
tmp = calculate_cov_mtx_per_class(Z, ind2, ind1, 

tmp); cov_matrices(k,:,:) = tmp; 

end 

 
end 

 
• mle_class.m

 
In order to classify using the ML approximation algorithm the following script is used: 

 
The Euclidean minimum distance algorithm is executed for a single run with the use of a null class: (the value of 

null_class_factor is an example). 

num_iter = 1;  
null_class_factor = 3.2; 

assign_all_pix = 0;  
Zmap = euc_min_distance_class(Z, spec_signatures,var_signatures, num_iter, 

lim_x, null_class_factor,assign_all_pix,scaled_vect, method); 

 

An estimate of the a priori probabilities is extracted by dividing the total number of pixels classified in each class 

with the total number of pixels classified: 

apriori = zeros(1,3);  
total_classified = sum(Zmap~=0); apriori(1) 

= sum(Zmap==1)/total_classified; 
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apriori(2) = sum(Zmap==2)/total_classified; 

apriori(3) = sum(Zmap==3)/total_classified; 

 
The final result is given to function mle_class (for num_iter, assign_all_pix and null_class_prob selected by the 
user – the values here are an example): 

 
num_iter = 2; 

assign_all_pix = 0; 

null_class_prob = 0.15;  
Zmap3 = mle_class(Z, spec_signatures, cov_matrices, num_iter, apriori, 

lim_x, null_class_prob,assign_all_pix); 

 
Function mle_class is exactly the same with bayes_class with two simple changes. A priori probabilities are given 
as input and the probability that is used for classification is given by the following command: 

 
probability(jj) = apriori(jj)*(1/2/pi)*sqrt(1/det(tmp))*exp(-(Znew(ii,:) - 

class_centers(jj,:))*(tmp^-1)*(Znew(ii,:) - class_centers(jj,:))'/2); 

 

Main Matlab script to produce the simulation results: 
 

convert_hyper2rgb 

close all 

create_spectral_signatures 

 
close all 

create_cov_mtx_per_class 

 
% Find image limits: 

lim_x = find_im_limits(Z); 

 
% Scaling picture 
method = 'max2one';  
[scaled_signatures, scaled_vars, scaled_vect] = 

scaling_hyp_image(spec_signatures, var_signatures, method); 

 
%% Minimum Euclidean distance for scaled image: 
num_iter = 4;  
null_class_factor = 3.2; 

assign_all_pix = 1;  
Zmap = euc_min_distance_class(Z, spec_signatures,var_signatures, num_iter, 

lim_x, null_class_factor,assign_all_pix,scaled_vect, method); 

 
colorset = zeros(num_classes+1, 3); 

colorset(1,:) = [0 0 0]; 

colorset(2,:) = [16 51 184]/256; 

colorset(3,:) = [6 109 40]/256; 

colorset(4,:) = [152 103 7]/256; 

 
Zmap_tmp = ind2rgb(Zmap+1, colorset); 

image(Zmap_tmp); 

 
%% Mahalanobis distance for scaled image: 
num_iter = 4;  
null_class_factor = 9; 

assign_all_pix = 1;  
Zmap2 = mahal_min_distance_class(Z, spec_signatures, cov_matrices, num_iter, 

lim_x, null_class_factor, assign_all_pix, scaled_vect, method); 

 
colorset = zeros(num_classes+1, 3); 

colorset(1,:) = [0 0 0]; 

colorset(2,:) = [16 51 184]/256; 

colorset(3,:) = [6 109 40]/256; 

colorset(4,:) = [152 103 7]/256; 

 
Zmap_tmp2 = ind2rgb(Zmap2+1, colorset); 
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figure 

image(Zmap_tmp2); 

 
%% Bayesian classifier: 
num_iter = 4; 

assign_all_pix = 1; 

null_class_prob = 0.15; 
 

Zmap3 = bayes_class(Z, spec_signatures, cov_matrices, num_iter, lim_x, 

null_class_prob,assign_all_pix); 

 
colorset = zeros(num_classes+1, 3); 

colorset(1,:) = [0 0 0]; 

colorset(2,:) = [16 51 184]/256; 

colorset(3,:) = [6 109 40]/256;  
colorset(4,:) = [152 103 7]/256; 

 
Zmap_tmp3 = ind2rgb(Zmap3+1, colorset); 

figure 

image(Zmap_tmp3); 

 
%% MLE classifier (Mdistance and Bayes) 
num_iter = 1;  
null_class_factor = 3.2; 

assign_all_pix = 0;  
Zmap = euc_min_distance_class(Z, spec_signatures,var_signatures, num_iter, 

lim_x, null_class_factor,assign_all_pix,scaled_vect, method); 

 
apriori = zeros(1,3);  
total_classified = sum(Zmap~=0); apriori(1) 

= sum(Zmap==1)/total_classified; apriori(2) 

= sum(Zmap==2)/total_classified; apriori(3) 

= sum(Zmap==3)/total_classified; 

 
num_iter = 2; 

assign_all_pix =1; 

null_class_prob = 0.15;  
Zmap4 = mle_class(Z, spec_signatures, cov_matrices, num_iter, apriori, 

lim_x, null_class_prob,assign_all_pix); 

 
colorset = zeros(num_classes+1, 3); 

colorset(1,:) = [0 0 0]; 

colorset(2,:) = [16 51 184]/256; 

colorset(3,:) = [6 109 40]/256; 

colorset(4,:) = [152 103 7]/256; 

 
Zmap_tm4 = ind2rgb(Zmap4+1, colorset); 

figure 

image(Zmap_tmp4); 

 
 

Other MATLAB functions created in the project: 
 

• pca_decomposition.m

 
Function to find the PCA decomposition matrix: 

 
function [pca_trans, D] = pca_decomposition(cov_mtx) 

% Implements Principal Component Analysis - For data reduction 

 

% Do the eigenvalue decomposition 
[V, D] = eig(cov_mtx); 

 
% Sort the eigenvalues: 
% min to max: 
[D, ind] = sort(diag(D)); 

% max to min: 
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D = D(end:-1:1); ind 
= ind(end:-1:1); 

 
% Do D matrix 
again: D = diag(D); 

 

% Define the pca transformation matrix: 
pca_trans = V(:,ind); 

 

• perform_pca_trans.m

 
Function to perform PCA decomposition: 

 
function ZZ = perform_pca_trans(Z, lim_x, cov_mtx, min_thres) 

 
%% Perform the pca transformation and only keep the significant channels 

 
% Calculate the PCA transformation matrix: 

[pca_trans, D] = pca_decomposition(cov_mtx); 

 
%% Isolate the usefull pixels: 

pixel_number = sum((lim_x(:,2) - lim_x(:,1)+1)); 

% Put all the useful pixels in a row  
Znew = zeros(pixel_number, size(Z,3)); 

counter = 1; 

for k = 1 : size(Z,1)  
Znew(counter : counter + lim_x(k,2) - lim_x(k,1),:) = Z(k, 

lim_x(k,1):lim_x(k,2),:); 

counter = counter + lim_x(k,2) - lim_x(k,1) + 1; 

end 

 
 

%% Perform the PCA transformation for all pixels: 
ZZ = zeros(size(Znew));  
% Calculate the mean (for each band for all classes) 

for k = 1 : pixel_number 

ZZ(k,:) = pca_trans*Znew(k,:)'; 

end 

 

 

%% Keep only the significant channels: 
sig_channels = find(diag(D)>D(1,1)/min_thres); 

 
ZZ = ZZ(:,1:length(sig_channels)); 
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