ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

«Αξιολόγηση ανεξάρτητων μεταβλητών πρόβλεψης και συσχέτιση αυτών για την πρόβλεψη ποσοστού επιτυχίας φοιτητών. Πεδίο εφαρμογής: εξόρυξη δεδομένων από το αρχείο του μαθήματος "Μηχανολογική Σχεδίαση CAD”» ΣΤΕΦ ΤΕΙ ΠΕΙΡΑΙΑ, ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΨΑΛΙΔΑΣ ΓΙΩΡΓΟΣ

Επιβλέπουσα: Κανετάκη Ζωή
Λέκτορας Εφαρμογών Π.Α.Δ.Α.

Αθήνα, Σεπτέμβριος 2020
1. Πρόλογος .. 5
2. Περίληψη .. 6
3. ΑΝΑΠΤΥΞΗ ... 8
 3.1 ΟΙΚΟΝΟΜΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ-ΕΡΓΑΣΙΑ ... 9
 3.2 ΚΑΤΑΛΗΨΕΙΣ .. 11
 3.2.1. ΣΥΝΟΠΤΙΚΑ ΟΙ ΕΠΙΠΤΩΣΕΙΣ .. 13
 3.3. ΕΞ ΑΠΟΣΤΑΣΕΩΣ ΕΚΠΑΙΔΕΥΣΗ .. 14
 3.3.1. Χαρακτηριστικά εξ αποστάσεως εκπαίδευσης ... 17
 3.3.2 Είδη e-Learning & Τεχνολογία ... 17
 3.3.3. Πλεονεκτήματα της Εξ’ Αποστάσεως εκπαίδευσης ... 20
 3.3.4. Μειονεκτήματα της Εξ’ Αποστάσεως Εκπαίδευσης ... 21
 3.3.5. Κόστος Εξ’ Αποστάσεως Εκπαίδευσης ... 22
 3.3.6. Κόστος και εξ αποστάσεως εκπαίδευση .. 23
 3.3.7. Συμπεράσματα ... 25
4. Μεθοδολογία και στόχοι έρευνας .. 27
5. ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ... 27
 5.1. Οι καινοτόμες μέθοδοι σε πειραματικό στάδιο: ... 27
 5.1.1. Ομαδική εργασία στα μέσα του εξαμήνου .. 27
 5.1.2. Τεστ προσομοίωσης εξέτασης: .. 32
 5.1.3. Άλλοι παράγοντες που συσχετίστηκαν .. 32
 5.2. α) Περίπτωση-Πίνακες δεδομένων με κενά και συσχετίσεις 35
 5.2.1. Αποτελέσματα πειραματικής διαδικασίας - συσχετίσεων 38
 Βαθμός χημείας πανελληνίων - τελικός βαθμός /20 41
 Βαθμός φυσικής πανελληνίων - τελικός βαθμός/20 42
 Βαθμός έκθεσης πανελληνίων –τελικός βαθμός/20 43
 Βαθμός μαθηματικών πανελληνίων - τελικός βαθμός/20 44
5. 3. β) Περίπτωση-Πίνακες δεδομένων που έχουν σβηστεί οι φοιτητές με τουλάχιστον ένα κενό στις βαθμολογίες τους και συσχετίσεις

5.4. γ) Περίπτωση- Πίνακες δεδομένων που έχουν συμπληρωθεί τα κενά με τον μέσο όρο της εκάστοτε στήλης και συσχετίσεις
Βαθμός χημείας πανελληνίων - τελικός βαθμός/ 20 .. 70
Βαθμός φυσικής πανελληνίων - τελικός βαθμός/ 20... 71
Βαθμός έκθεσης πανελληνίων - τελικός βαθμός/20 .. 72
Βαθμός μαθηματικών πανελληνίων - τελικός βαθμός/20 .. 72
Μέσος όρος βαθμών χημείας, φυσικής, έκθεσης και μαθηματικών πανελληνίων -
tελικός βαθμός/20 ... 73
Βαθμός εργασιών - τελικός βαθμός/20 .. 74
Βαθμός τεστ προσομοίωσης - τελικός βαθμός/20 .. 74
Μέσος όρος χημείας πανελληνίων έτους 2019 - τελικός βαθμός/ 20.............. 75
Μέσος όρος φυσικής πανελληνίων έτους 2019 - τελικός βαθμός/20 75
Μέσος όρος έκθεσης πανελληνίων έτους 2019 -τελικός βαθμός/ 20............... 76
Μέσος όρος μαθηματικών πανελληνίων έτους 2019 -τελικός βαθμός/ 20........ 77
Συνολικά μόρια πανελλαδικών εξετάσεων - τελικός βαθμός/20...................... 77

6. Συμπεράσματα .. 78

7. ΒΙΒΛΙΟΓΡΑΦΙΑ .. 80

7.1 Ελληνική Βιβλιογραφία .. 80

7.2 Ξένη Βιβλιογραφία .. 82
1. Πρόλογος

Η παρούσα διπλωματική εργασία με τίτλο «Αξιολόγηση ανεξάρτητων μεταβλητών πρόβλεψης και συσχέτιση αυτών για την πρόβλεψη ποσοστού επιτυχίας φοιτητών πεδίο εφαρμογής: Εξόρυξη δεδομένων από το αρχείο του μαθήματος "Μηχανολογική Σχεδίαση CAD"» δημιουργήθηκε στα πλαίσια της ολοκλήρωσης των προϋποθέσεων για την λήψη του πτυχίου μου από το Πανεπιστήμιο Δυτικής Αττικής, τμήμα Μηχανολόγων Μηχανικών. Η εκπόνησή της ορίστηκε κατά το εαρινό εξάμηνο, τον Φεβρουάριο του 2020, με υπεύθυνη καθηγήτρια την κυρία Κανετάκη Ζωή. Ολοκληρώθηκε εντός των προβλεπόμενων χρονικών ορίων, τον Σεπτέμβριο του 2020.

Βασικό αντικείμενο αυτής της εργασίας, όπως μαρτυρά και ο τίτλος της είναι να ερευνηθεί σε βάθος ο παράγοντας που επηρεάζει καθοριστικά την πρόοδο των φοιτητών σε βάθος χρόνου. Για την διεξαγωγή της μελέτης έγινε χρήση πληθώρας διαγραμματικών αναπαραστάσεων, γραφημάτων και συγκεντρωτικών πινάκων.

Θα ήθελα να εκφράσω τις ευχαριστίες μου στην επιβλέπουσα καθηγήτριά μου κυρία Κανετάκη Ζωή για την πολύτιμη βοήθεια της και τις χρήσιμες ιδέες της που συνέβαλαν στην βελτίωση της εργασίας μου. Ευχαριστώ επίσης τους καθηγητές της σχολής μου για την απόκτηση των απαραίτητων γνώσεων του αντικειμένου και για το γεγονός ότι ενίσχυσαν την αγάπη και προσήλωσή μου στον κλάδο της Μηχανολογίας.
2. Περιλήψη

Βασικό αντικείμενο αυτής της διπλωματικής εργασίας είναι η επιστημονική διερεύνηση των καθοριστικών παραγόντων που επηρεάζουν την απόδοση των φοιτητών κατά τα έτη των σπουδών τους και οι οποίοι συμβάλλουν στο τελικό αποτέλεσμα.

Η μελέτη συμπεριέλαβε πληθώρα διαφορετικών παραγόντων, όπως οικονομικοί, ενδογενείς λόγοι (καταλήψεις), τρόποι διδασκαλίας (εξ αποστάσεως εκπαίδευση). Στο πειραματικό κομμάτι εξετάστηκαν παράγοντες όπως η απόδοση των φοιτητών σε προγενέστερες εξετάσεις, στην εκπόνηση εργασιών σε συγκεκριμένο μάθημα καθώς και σε τεστ προσομοίωσης.

Σκοπός των πειραμάτων ήταν να διαπιστωθεί αν υπήρχε κλιμακούμενη αυξητική τάση στην πρόοδό τους και συνάφεια με τους προαναφερθέντες παράγοντες.

Μια πρώτη παρατήρηση είναι ότι δεν συνέβαλαν όλοι οι παράγοντες ισόποσα στην διαμόρφωση του τελικού αποτελέσματος. Όσον αφορά την μεθοδολογία, έγινε προσπάθεια η διπλωματική εργασία να περιλαμβάνει θεωρητικό και πρακτικό κομμάτι έτσι ώστε τα συμπεράσματά της να προσεγγίζουν την πραγματικότητα, να είναι κατανοητά και σαφή και να καλύπτουν πλήρως το εξεταζόμενο θέμα.
ABSTRACT

The principal objective of the thesis is the scientific exploration of the decisive factors determining students’ performance during their academic years which contribute to the final outcome.

The study included a large number of factors such as financial intrinsic reasons (squatting), teaching methods (distance learning). In the experimental part, factors like students’ performance in the previous exams, project developing in the specific subject as well as simulation tests were examined.

The aim of the experiments was to establish whether there was an escalating incremental trend in the students’ progress and whether it was relevant to the above mentioned factors.

An initial observation is that all the factors contributed equally to the forming of the final result. As far as methodology is concerned, there was an effort a practical and theoretical part to be included in the thesis, so that its conclusions approximate to reality and the subject be totally comprehensible and explicit.
3. ΑΝΑΠΤΥΞΗ

Το πειραματικό σκέλος περιλαμβάνει τους εισακτέους του 2019 στο Πανεπιστήμιο Δυτικής Αττικής στο τμήμα των Μηχανολόγων Μηχανικών. Εκείνη την χρονιά σύμφωνα με τα επίσημα στοιχεία του Υπουργείου Παιδείας οι υποψήφιοι των ΓΕΛ που συμμετείχαν στην Ομάδα Προσανατολισμού Ανθρωπιστικών Σπουδών ήταν 26491, στις Θετικές Σπουδές 30716 υποψήφιοι και στην Ομάδα Σπουδών Οικονομίας και Πληροφορικής 24428. Συνολικά συμμετείχαν 81930 υποψήφιοι από ΓΕΛ και 12846 από ΕΠΑΛ. Στους παρακάτω πίνακες παρουσιάζεται ο αριθμός υποψηφίων ανά ομάδα προσανατολισμού για τα ΓΕΛ και ανά τομέα για τα ΕΠΑΛ.

<table>
<thead>
<tr>
<th>ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ</th>
<th>ΑΡΙΘΜΟΣ ΥΠΟΨΗΦΙΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΣΠΟΥΔΩΝ</td>
<td>26180 ΗΜΕΡΗΣΙΑ 311 ΕΞΕΠΕΡΙΝΑ</td>
</tr>
<tr>
<td>ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ</td>
<td>30538 ΗΜΕΡΗΣΙΑ 178 ΕΞΕΠΕΡΙΝΑ</td>
</tr>
<tr>
<td>ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ</td>
<td>24233 ΗΜΕΡΗΣΙΑ 195 ΕΞΕΠΕΡΙΝΑ</td>
</tr>
<tr>
<td>ΜΟΥΣΙΚΩΝ ΣΠΟΥΔΩΝ (ΜΟΝΟ)</td>
<td>293 ΗΜΕΡΗΣΙΑ 2 ΕΞΕΠΕΡΙΝΑ</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td>81244 ΗΜΕΡΗΣΙΑ 686 ΕΞΕΠΕΡΙΝΑ</td>
</tr>
</tbody>
</table>
Από το σύνολο των υποψηφίων των θετικών σπουδών (30716) και από τους υποψηφίους θεμέλια μηχανολογίας (1899), εισήλθαν στο τμήμα Μηχανολόγων Μηχανικών του Πανεπιστημίου Δυτικής Αττικής 169 άτομα εκ των οποίων τα 26 παρακολούθησαν το μάθημα Μηχανολογική Σχεδίαση CAD και αποτελούσαν στην ουσία το δείγμα του πειράματος.

3.1 ΟΙΚΟΝΟΜΙΚΟΙ ΠΑΡΆΓΟΝΤΕΣ-ΕΡΓΑΣΙΑ

Στις μέρες μας ένα μεγάλο μέρος των φοιτητών είναι αναγκασμένο να εργάζεται εξαιτίας της ευρύτερης οικονομικής κρίσης που επικρατεί και επηρεάζει σημαντική μερίδα οικογενειών. Σε αυτή την περίοδο πολλοί γονείς έμειναν άνεργοι ή μειώθηκε ο μισθός τους με αποτέλεσμα να μην μπορούν να καλύψουν τα έξοδα παιδιού που φοιτεί, ιδιαίτερα στην περίπτωση που βρίσκεται μακριά από την μόνιμη κατοικία του. Σύμφωνα με μελέτη που έχει γίνει από το Ίδρυμα Οικονομικών και Βιομηχανικών Ερευνών (ΙΟΒΕ) η κρίση επέδρασε στην επιλογή των φοιτητών να σπουδάσουν στον τόπο κατοικίας.
τους.1«Τα ποσοστά εντοπιότητας αυξήθηκαν από περίπου 30% πριν την κρίση σε 33,9% το 2011 και 35,2% το 2013, υποχωρώντας στη συνέχεια σε 31,2% το 2014». Αυτό έχει σαν αποτέλεσμα να αντιμετωπίζουν δυσκολίες στην πρόοδο της σχολής καθώς την ώρα που θα έπρεπε να διαβάζουν ή να παρακολουθούν τις διαλέξεις του πανεπιστημίου είναι αναγκασμένοι να εργάζονται ή να πρέπει να ξεκουραστούν από την δουλειά που έκαναν προηγουμένως. Έχει παρατηρηθεί επίσης ότι τα άτομα που έχουν αυτό τον τρόπο ζωής τις περισσότερες φορές δεν προετοιμάζουν να προσεκτικούν στις εργασίες που έχουν και σε περιπτώσεις που είναι ομαδικές είναι συχνό το φαινόμενο να μην συμμετέχουν αρκετά και να μην αφομοιώνουν τις γνώσεις που θα έπρεπε. Παρόμοια κατάσταση δημιουργείται και στην περίοδο της εξεταστικής που κάποιες φόρες δεν υπάρχει και ο χρόνος να παρουσιαστούν στην εξέταση. Τα εργαστήρια είναι μια επιπρόσθετη δυσκολία για αυτά τα παιδιά διότι η παρουσία τους, τις περισσότερες φορές είναι υποχρεωτική και πολλές φόρες η επιτυχής παρακολούθησή τους είναι προϋπόθεση για να εξεταστούν στο κομμάτι της θεώρησης.

Σε έρευνα που παρουσίασε το Πανεπιστήμιο Κρήτης προέκυψαν τα παρακάτω αποτελέσματα σχετικά με τις στάσεις και αντιλήψεις των φοιτητών για την οικονομική κρίση.2 «Σύμφωνα με τα αποτελέσματα από 163 φοιτητές [112 γυναίκες (68,7%) και άντρες (31,3%)], δήλωσαν ότι εργάζεται συνολικά το 26%, εκ των οποίων το 30% είναι άντρες και το 24,4% είναι γυναίκες, και αντίστοιχα δεν εργάζεται συνολικά το 74% (το 70% των ανδρών και το 75,6% των γυναικών). Από αυτούς που δεν εργάζονται, 57% ψάχνει για εργασία και, εξ αυτών, με δεδομένη την αυξανόμενη ανεργία, το 68,8% θα δεχόταν μια βιοποριστική εργασία έστω και με πολύ χαμηλό μισθό.»

Οι οικονομικοί παράγοντες θεωρούνται από τους πιο σημαντικούς παράγοντες καθυστέρησης των σπουδών των φοιτητών που συχνότερα αφορούν αυτούς που προέρχονται από τα κατώτερα κοινωνικά στρώματα. Αυτοί ανήκουν και στις περιπτώσεις που αναγκάζονται να αναβάλουν ή να παρατήσουν την σχολή οριστικά αφού δεν μπορούν να καλύψουν ούτε το ενοίκιο.

1 Ιδρύμα Οικονομικών και Βιομηχανικών Ερευνών (ΙΟΒΕ), Εκπαιδευτικές ανισότητες στην Ελλάδα: Πρόσβαση στην τριτοβάθμια εκπαίδευση και επιπτώσεις της κρίσης.
2 Φραγκάκης Εμμανουήλ, Ο Αντίκτυπος της οικονομικής κρίσης στους φοιτητές του Πανεπιστήμιου Αιγαίου, μεταπτυχιακή εργασία, Πανεπιστήμιο Αιγαίου Σχολή Επιστημών της Διοίκησης, Χίος 2014, σελ. 18
3.2 ΚΑΤΑΛΗΨΕΙΣ

Οι καταλήψεις είναι ένα μέσο που χρησιμοποιούν οι φοιτητές για να γνωστοποιήσουν και να ικανοποιήσουν τα αιτήματά τους. Η αποχή, ενός φοιτητή είναι νόμιμη, έχει το δικαίωμα να μην προσέλθει στο μάθημα, αναλαμβάνοντας την αντίστοιχη ευθύνη (π.χ. αν η προσέλευση στο συγκεκριμένο μάθημα είναι υποχρεωτική, ο φοιτητής δεν μπορεί να απαιτήσει να περάσει το μάθημα). Παρόλο που οι φοιτητές έχουν δικαίωμα να μην προσέρχονται στο μάθημα, δεν έχουν την αρμοδιότητα να αποφασίζουν αν θα διδαχτεί το μάθημα. Η αρμοδιότητα αυτή, σύμφωνα με το νόμο, ανήκει στη Σύγκλητο. Για να είναι νόμιμη η οποιαδήποτε απόφαση συλλογικού οργάνου, αυτό θα πρέπει να συνεδριάζει με την εκ του νόμου προβλεπόμενη σύνθεσή του. Ο νόμος ορίζει σαφώς τις διαδικασίες για την εκπροσώπηση των φοιτητών -προπτυχιακών, μεταπτυχιακών, υποψηφίων διδακτόρων- στα συλλογικά όργανα.

Διακοπή του εκπαιδευτικού έργου αλλά και της εν γένει λειτουργίας ενός ΑΕΙ, πέρα από τα προβλεπόμενα στο νόμο αυτό, είναι δυνατή με απόφαση της Συγκλήτου και μόνο για εξαιρετικές περιπτώσεις. (Άρθρο 25, παρ. 4, Ν. 1268/1982)

Είναι επομένως φανερό ότι υπάρχει η νόμιμη δημοκρατική διαδικασία συνδυασμένη με ένα δημοκρατικό αίσθημα των προτανικών Αρχών και των φοιτητών, ώστε όποτε εμφανιζεται οποιαδήποτε ομάδα φοιτητών μας, που θέλει να καταθέσει τα αιτήματά της, πάντα να μπορεί να γίνει συντεταγμένος διάλογος με εκπροσώπους τους. Όλη η πανεπιστημιακή κοινότητα έχει απορρίψει πρακτικές προπηλακισμών και επιβολής απόψεων μέσω της βίας.

Η κατάληψη ως πράξη αντιστρατεύεται πρώτα από όλα την ελεύθερη διακίνηση ιδεών, δηλαδή το ιδίο το πανεπιστημιακό άσυλο: σε έναν χώρο που μια (οποιαδήποτε) πολιτική δύναμη ελέγχει ποιος μπαίνει και ποιος μπορεί να παραμείνει εκεί, αυτονόητα
δεν υπάρχει δικαίωμα στη γνώμη εκεί, νόμος είναι το δίκαιο του ισχυρού και αυτό μόνο δημοκρατία δεν είναι. Δεύτερον, αυτή η πράξη είναι παράνομη και αντίθετη στα συμφέροντα των φοιτητών, οι οποίοι στερούνται το δικαίωμα στη γνώση: έχουν χαθεί εξάμηνα επί εξαμήνων, έχουν δαπανηθεί χρήματα που δεν περισσεύουν σε κανέναν.

Μετά το 1974 είναι πολύ συχνό το φαινόμενο της κατάληψης. Καταλήψεις γίνονται σε εποχές ευμάρειας, σε δύσκολες εποχές, γενικά γίνονται παντού και συνέχεια. Έχει γίνει πλέον μία συνήθεια. Αντίθετα, σε αμερικανικά και άλλα ευρωπαϊκά πανεπιστήμια δεν γίνονται καταλήψεις. Καταλήψεις γίνονται περισσασιακά σε ευρωπαϊκά πανεπιστήμια, αλλά από την θέση και τους συντάκτες του τον ιδιότυπο συνδυασμό και έντασης που απέκτησε το φαινόμενο στην Ελλάδα. Πρόκειται δηλαδή για μια ακόμη ελληνική "καινοτομία".

Με δεδομένο πλέον αυτό το φαινόμενο, διαθέτουμε τη σπάνια ευχέρεια της παρατήρησης των επιπτώσεων του σε βάθος χρόνου, τόσο ως προς τη χώρα γενικά όσο και ως προς τους ανθρώπους. Αρκετοί από αυτούς που κάνουν τις καταλήψεις έστησαν πολιτικές καριέρες, ενώ οι περισσότεροι κάποιοι τελικά κατάφεραν να δουλέψουν επιβεβαιώνοντας έτσι τον συνδυασμό ημιμάθειας και αλαζονείας που απέκτησαν στο πανεπιστήμιο και μετατρέποντας τον σε ένα μόνιμο εισόδημα άμεσης ή έμμεσης κρατικής προέλευσης.

Τα πανεπιστήμια εξυπηρετούν τους στόχους των ομάδων που τα ιδιοποιούνται. Έτσι, τα κόμματα μπορούν να χρησιμοποιούν το πανεπιστήμιο ως εργαλείο εξυπηρέτησης πελατειών και στρατολόγησης στελεχών. Για πολλούς φοιτητές έχει αναχθεί σε μέσο έξεφρενης διαβίωσης, προνομιούχο δίαυλο διορισμού στο Δημόσιο ή πεδίο πραγμάτωσης των «επαναστατικών» τους ονείρων.

Η κατάληψη είναι ένα ακραίο μέτρο το οποίο συνήθως δεν φέρνει τα πολυπόθητα αποτελέσματα. Αντιθέτως, τις περισσότερες φορές χάνονται τα μαθήματα, με αποτέλεσμα οι φοιτητές να χάνουν το εξάμηνο τους και οι περισσότεροι να καθυστερούν να πάρουν το πτυχίο τους αν βρίσκονται στο τελευταίο έτος. Ακόμη, επιστημονικά συνέδρια αναβάλλονται παρότι σε κάποια από αυτά έρχονται δεκάδες συνέδρια από πολλές χώρες της ΕΕ. Επίσης οι φοιτητές του προγράμματος Εράσμους από άλλες χώρες της ΕΕ μένουν στην Ελλάδα χωρίς χρήματα ή διοικητική υποστήριξη των εργασιών τους,
καθώς καμία διοικητική υπηρεσία του πανεπιστημίου δεν λειτουργεί. Επιπροσθέτως, πολλές φορές σημειώνονται ζημιές στις εγκαταστάσεις των Πανεπιστημίων. Ο διάλογος είναι πάντα ο καλύτερος και πιο αποτελεσματικός τρόπος για να λυθούν τα προβλήματα των φοιτητών. «Όταν η κεντρική εξουσία δεν λειτουργεί, αλλά αποδέχεται τον κάθε εκβιασμό, τότε οι αλληλοσυγκρουόμενες ομάδες κάτω από αυτή αλληλοσπαράσσονται προσπαθώντας να την κατακτήσουν» έλεγε πρόσφατα μιλώντας στο «Βήμα» έμπειρος καθηγητής του πανεπιστημίου Αθηνών.

Τέλος, η διαιώνιση αυτών των καταστάσεων κάνει την κοινωνία να αγανακτεί για την κατασπατάληση των πόρων της, να ζητεί τη λήψη δραστικών μέτρων για να επιβληθεί ο νόμος και η τάξη. Υπάρχει κίνδυνος ριζοσπαστικοποίησης των συντηρητικών κομματιών της κοινωνίας. Και όταν μια κοινωνία αρχίζει να πιστεύει ότι η λύση είναι στη διά της βίας επιβολή της τάξης, αρχίζουν να κλονίζονται τα θεμέλια της δημοκρατίας προς όφελος ακραίων δυνάμεων.

3.2.1. ΣΥΝΟΠΤΙΚΑ ΟΙ ΕΠΙΠΤΩΣΕΙΣ

- Διακοπή του εκπαιδευτικού έργου και απώλεια μαθημάτων (ακαδημαϊκό επίπεδο) με άμεση συνέπεια:
- Αναστολή ή και απώλεια εξεταστικής και καθυστέρηση λήψης πτυχίου (προσωπικό επίπεδο)
- Παρεμπόδιση ερευνητικών δραστηριοτήτων
- Διατάραξη των διεθνών συνεργασιών, αναβολή ή και ακύρωση επιστημονικών συνεδριάσεων

13
• Εξευτελισμός, ταπείνωση όταν γίνεται σύγκριση με τα πανεπιστήμια του εξωτερικού
tα οποία λειτουργούν άρτια, δεν μπορούμε να είμαστε αρκετά ανταγωνιστικοί σε
eπίπεδο ποιοτικής παιδείας(διεθνές επίπεδο)
• Παρεμπόδιση (από την μειοψηφία των φοιτητών) όσων επιθυμούν να
parakolouthousin mabhýmata lógw katalýsh ths dhmokratikwn thesmw kai ths
vomimósthas
• Επικράτηση βίας και παρανομίας και έλλειψη υγιούς διαλόγου για την επίλυση των
problhmatántwn ths fwtíktikhs koinótitas kai thn ikanopóíhs thn aitímatów ths
(ethnikó kai politikó epípedo)
• Οι καταλήψεις γίνονται εργαλείο στα χέρια των κομματικών παρατάξεων→ τρόπος
πίεσης και ekbiasmou tis panteiştmiakhs koinótitas
• Έλλειψη ποιοτικής εκπαίδευσης σε προπτυχιακό επίπεδο συνεπάγεται σχεδόν
anikánon eúllontikón epanggelmatión kai epistímwn pio prosefóroun xamhlhís
axías/ποιότητας, mì ikanopoiítikés, aneparkheis, akómy kai epiblabveis/ ζημιογόνες
uphreías (βλ. Πατρούς, μηχανικούς). Κανείς από αυτή την κατηγορία φοιτητών δεν
brískei to panteiştmiómo twn katalámeiswn éna elkuistikó pedío sto opoioa na strépsi
thn prosekh kai th dhmioyugikí prospátheiá tou. Aποτέλεσμα: eisérkontai sthn
agora eragasia sthn hýra mésa apo elelífi kattártisi kai me xamhli diáthei
prosforás sthn koinwínia kai sthn hýra.
• Δημιουργούν ένα αίσθημα κίβδηλης (ψεύτικης) χαλάρωσης, μαλθακότητας, ανίας kai
adiaphorías gia pneumatikí kallíérgeia stous fwtíteis (ψυχολογικό epípedo)

3.3. ΕΞ ΑΠΟΣΤΑΣΕΩΣ ΕΚΠΑΙΔΕΥΣΗ

Η τεχνολογία εξελίχθηκε ραγδαία στα τέλη του 2ου αιώνα και στις αρχές του
21ου αιώνα. Στη βιβλιογραφία (Garrison&Anderson, 2003) υπάρχει μια γραμμική
ταξινόμηση των διάφορων φάσεων τις εξ αποστάσεως εκπαίδευσης ανάλογα με το είδος της τεχνολογίας που χρησιμοποιείται. Παρόλα αυτά έχουμε περιπτώσεις χρήσης τεχνολογιών από την αρχή τις εξ αποστάσεως εκπαίδευσης που χρησιμοποιούνται μέχρι σήμερα. Για να ξεχωρίσουμε τις εξελικτικές φάσεις θεωρούμε ως σημείο διαχωρισμού των εξελικτικών φάσεων την υποκείμενη τεχνολογία που υποστηρίζει την εκπαιδευτική διαδικασία. Με αυτό τον τρόπο θεώρησης παρουσιάζονται τέσσερις περίοδοι στην εξέλιξη της εξ Αποστάσεως εκπαίδευσης (Moore et al, 2000; Garrison & Anderson, 2003; Schultz et al, 2008), οι οποίες αντίστοιχα διαμεσολαβούνται από: α. έντυπο υλικό μέσω αλληλογραφίας, β. μετάδοση ήχου και εικόνας μέσα από το ράδιο και την τηλεόραση, γ. ψηφιακό περιεχόμενο μέσω του υπολογιστή και δικτύων υπολογιστών, δ. ψηφιακό περιεχόμενο και αλληλεπίδραση μέσω του Διαδικτύου και του Παγκόσμιου Ιστού.

Στην 1η περίοδο (19ος αι. - '60) η Εξ Αποστάσεως Εκπαίδευση διαμεσολαβείται από έντυπο υλικό (σε κάποιες περιπτώσεις από slides και ταινίες εκπαιδευτικού περιεχομένου) που διανέμεται στους εκπαιδευομένους μέσω ταχυδρομείου.

Στη 2η περίοδο ('60 - '80), η οποία συμπίπτει με την ραγδαία ανάπτυξη του ραδιοφώνου και της τηλεόρασης, αλλά και με την πρώιμη ανάπτυξη των υπολογιστών, τα εκπαιδευτικά ιδρύματα εμπλουτίζουν τις παραδοσιακές μεθόδους διανομής του εκπαιδευτικού υλικού με αναμετάδοση ραδιοφωνικών και τηλεοπτικών παραγωγών, αποσκοπώντας σε ακόμα μεγαλύτερους πληθυσμούς.

Στην 3η περίοδο ('80 - '90) οι υπολογιστές και οι εφαρμογές που μπορούν να υποστηρίζουν το υλικό από έντυπο και αναλογικό μετασχηματίζεται σε ψηφιακό. Πολυμεσικές εφαρμογές (CD-ROM) που εκτελούνται στον προσωπικό υπολογιστή του εκπαιδευομένου αποτελούν τη νέα τάση στην εκπαιδευτική τεχνολογία με τον όρο «Υποβοηθούμενη Μάθηση από Υπολογιστή» (Computer-AssistedInstruction- CAI), που περιλαμβάνει προσομοιώσεις, προγράμματα εξάσκησης και πρακτικής (drill and practice), αυτό-καθοδηγούμενα μαθήματα, κ.λπ.

Στην 4η περίοδο ('90- σήμερα), τα προγράμματα εξ αποστάσεως εκπαίδευσης εξελίσσονται παράλληλα με τη ραγδαία ανάπτυξη του Διαδικτύου (Garrison & Anderson, 2003), εκμεταλλεύοντας τις νέες δυνατότητες και υπηρεσίες που προσφέρει ο Παγκόσμιος Ιστός (WorldWideWeb- WWW).
Έτσι η σχολική εξ αποστάσεως εκπαίδευση χρησιμοποιεί καινούρια μέσα, όπως είναι ο ηλεκτρονικός υπολογιστής, το διαδίκτυο και η τηλεδιάσκεψη, δίνοντας έτσι νέες μορφές υποστήριξης για τους εκπαιδευόμενους.

Το εκπαιδευτικό υλικό, έντυπο ή λογισμικό παρέχεται μέσω του διαδίκτυου, και η επικοινωνία μεταξύ δασκάλων και μαθητών λαμβάνει χώρα αξιοποιώντας σύγχρονα ή ασύγχρονα μέσα επικοινωνίας (Βασάλα, 2005).

Η πραγματοποίηση της εκπαιδευτικής διαδικασίας μεταξύ ενός ή περισσότερων εκπαιδευτών και ομάδας εκπαιδευμένων οι οποίοι ενώ δεν βρίσκονται στο ίδιο τόπο αλλά ούτε και στην ίδια χρονική στιγμή μπορούν να επικοινωνούν μεταξύ τους και να δέχονται την καθοδήγηση, οργάνωση και διδασκαλία κάποιου εκπαιδευτικού φορέα. Σήμερα τα κανάλια αυτά της επικοινωνίας δίνονται μέσω της τεχνολογίας και του διαδικτύου.

«Η υπερμεσιτική τεχνολογία εξυπηρέτησε την εξ αποστάσεως εκπαίδευση συνενώνοντας σε ένα βασικό μέσο, τον υπολογιστή, το μαθησιακό πακέτο (έντυπο υλικό, κασέτες ήχου, οπτικό υλικό – εικόνες). Για την ακρίβεια υποκατέστησε το παραδοσιακό μαθησιακό πακέτο, χωρίς να επηρεάσει τους παράγοντες που συνδέουν το μαθησιακό υλικό με τη μαθησιακή διαδικασία από την πλευρά του σπουδαστή» (Μελίστα Α., Χίλλ Μ., 2001).

Η ποιότητα της Σχολικής εξ Αποστάσεως Εκπαίδευσης εξαρτάται άμεσα από την ποιότητα του εκπαιδευτικού υλικού και από την ποιότητα της αλληλεπίδρασης και της επικοινωνίας που λαμβάνει χώρα μεταξύ των εκπαιδευόμενων και των διδασκόντων. Η Σχολική εξ Αποστάσεως Εκπαίδευση αξιοποιώντας τις εξελίξεις της επιστήμης και της τεχνολογίας είναι σε θέση να παρέχει στους εκπαιδευόμενους υψηλής ποιότητας πολυτρόπικο εκπαιδευτικό υλικό είτε σύγχρονο είτε ασύγχρονο, ενθαρρύνοντας την επικοινωνία και την αλληλεπίδραση μεταξύ του διδάσκοντα, του 22 εκπαιδευτικού υλικού και των εκπαιδευόμενων. Ο διδάσκοντας στο πλαίσιο αυτό λειτουργεί ενθαρρυντικά και υποστηρικτικά, βοηθώντας τους συμμετέχοντες να αξιοποιήσουν τις μαθησιακές τους δυνατότητες και να επιτύχουν τους στόχους τους (Βασάλα, 2005-Μίμινου&Σπανακά, 2013).
3.3.1. Χαρακτηριστικά εξ αποστάσεως εκπαίδευσης

Κύρια χαρακτηριστικά της εξ αποστάσεως εκπαίδευσης εκτός της απόστασης που χωρίζει τον διδάσκοντα από τον διδασκόμενο είναι:

1. Το εκπαιδευτικό υλικό είναι ειδικά σχεδιασμένο ώστε να είναι λειτουργικό, ολοκληρωμένο και πολυμορφικό.
2. Τα έντυπα κείμενα μεταφέρονται με την χρήση τεχνικών μέσων για την μεταφορά του περιεχομένου της εκπαίδευσης.
3. Είναι δυνατή η εύκολη αναπροσαρμογή του εκπαιδευτικού υλικού.
4. Υπάρχει η δυνατότητα ζωντανού διαλόγου για την μεγαλύτερη ωφέλεια του διδασκομένου.
5. Υπάρχει ακόμα και η δυνατότητα συναντήσεων σε περιστασιακή βάση τόσο για διδακτικούς όσο και για κοινωνικούς σκοπούς.

3.3.2. Είδη e-Learning & Τεχνολογία

Η online εξ αποστάσεως εκπαίδευση ουσιαστικά περιλαμβάνει όλες τις τεχνολογίες του Διαδικτύου και του Web, για την παροχή και δημιουργία μαθησιακών εμπειριών από απόσταση. Σε εδώ ως σημείο αναφοράς θα παρουσιαστούν οι εξής τύποι εξ’ αποστάσεως εκπαίδευσης:

- Τηλε-διδασκαλία (instructor-led e-learning). Όταν η εξ’ αποστάσεως εκπαίδευση γίνεται μέσω εικονικών τάξεων (σύγχρονη επικοινωνία) με μικρό αριθμό συμμετοχών.
Ο εκπαιδευτής κάνει διαλέξεις, δείχνει διαφάνειες, κάνει συζητήσεις, θέτει ερωτήσεις στους εκπαιδευομένους και αξιολογεί.

- Αυτό-μάθηση (learner-led, standalone, self-directed e-learning). Όταν η εκπαιδευτική διαδικασία στηρίζεται στο περιεχόμενο των ηλεκτρονικών μαθημάτων (πολυμεσικό υλικό, πολυτροπικό, σενάρια, μελέτες περίπτωσης), ατομικές δραστηριότητες και αυτοαξιολόγηση. Εδώ υπάρχει διαφορά από το ComputerBasedTraining (CD, DVD), που γίνεται στον υπολογιστή του εκπαιδευομένου, γιατί η ηλεκτρονική πλατφόρμα μπορεί να παρακολουθεί τις δραστηριότητες του εκπαιδευομένου (ιστορικό του εκπαιδευομένου, στατιστικά, κ.λπ.).

- Υποβοηθούμενη Μάθηση (facilitated e-learning). Στην εξ’ αποστάσεως εκπαίδευση η εκπαιδευτική διαδικασία στηρίζεται τόσο στο περιεχόμενο των ηλεκτρονικών μαθημάτων (υλικό, ατομικές δραστηριότητες και αυτό-αξιολόγηση) όσο και στον εκπαιδευτή και τα μέσα που χρησιμοποιεί. Ο εκπαιδευτής ενθαρρύνει στη μάθηση, δηλαδή ενθαρρύνει, βοηθάει, δίνει ιδέες, συζητάει με τον εκπαιδευόμενο και γενικότερα παρακολουθεί την πορεία της κοινότητας μάθησης (facilitator).

- Tele-mentoring/ e-Coaching. Όταν η τεχνολογία αναπτύσσει και διατηρεί την εκπαιδευτική σχέση ανάμεσα στον μέντορα και στον μαθητή. Το coaching αποτελεί μια υποκατηγορία μεντορείας και συνήθως ο e-coacher είναι τεχνικός ή επιχειρηματικός ή προσωπικός σύμβουλος για κάποιο συγκεκριμένο θέμα ή πρόβλημα.

Όπως σε κάθε οργάνωση ή διαδικασία υπάρχουν οι βασικοί παράγοντες έτσι και στη διαδικασία της εξ’ αποστάσεως εκπαίδευσης υπάρχουν οι εξής παράγοντες-ρόλοι:

- Εκπαιδευτές
- Δημιουργοί και σχεδιαστές μαθημάτων (Designers)
- Εκπαιδευόμενοι (Learners)
- Διαχειριστές μαθημάτων (Administratos)
- Φορείς εκπαίδευσης
Σε ένα μαθησιακό περιβάλλον οι συμμετέχοντες έχουν ρόλους για την εκτέλεση μιας σειράς εργασιών όπως:

- Δόμηση των προσφερόμενων μαθημάτων, δημιουργία καταλόγων και πεδίων μάθησης (Εκπαιδευτές, διαχειριστές)
- Η δημιουργία περιβάλλοντος εργασίας και ρόλων (Διαχειριστές)
- Οι μαθησιακές ενέργειες (Μαθητές ή εκπαιδευόμενοι)
- Η δημιουργία νέων μαθημάτων (Σχεδιαστές, δημιουργοί)
- Η ενσωμάτωση έτοιμων μαθημάτων (Σχεδιαστές)
- Η εγγραφή στα μαθήματα (Εκπαιδευτές)
- Η παρακολούθηση και διαχείριση, οι διάφοροι έλεγχοι και η αξιολόγηση των εκπαιδευόμενων (Εκπαιδευτές)
- Η δημιουργία αναφορών προοδεία, στατιστικά κλπ. (Εκπαιδευτές, διαχειριστές)

Οι Φορείς Εκπαίδευσης έχουν τη δυνατότητα να δημιουργούν:

- Καταλόγους από όλα τα διαθέσιμα μαθήματα
- Παροχή αυτοματισμών στην εγγραφή των εκπαιδευόμενων στα μαθήματα, τακτοποίηση χρεώσεων, πληρωμών.
- Παρακολούθηση των εκπαιδευόμενων σε κάθε μάθημα στο οποίο εγγράφονται και παρακολουθούν. Συγκεκριμένα θα πρέπει να έχουν τη δυνατότητα ιχνηλάτησης (Vacking) των δραστηριοτήτων των εκπαιδευόμενων βήμα προς βήμα και με λεπτομέρειες όπως ο χρόνος που ξοδεύει σε κάθε μάθημα, η ενεργός διάρκεια, τα τεστ που ολοκλήρωσε και οι αντίστοιχες βαθμοί κτλ.
- Αναφορές απόδοσης των εκπαιδευόμενων σε ατομικό επίπεδο αλλά και σε επίπεδο ομάδας ή τάξης.
- Υποστήριξη για διασύνδεση με άλλα συστήματα πληροφορικής του Φορέα π.χ σύστημα μισθοδοσίας των εργαζομένων

19
3.3.3. Πλεονεκτήματα της Εξ' Αποστάσεως εκπαίδευσης

Η νέα αυτή μορφή μάθησης, παρόλο που υπολείπεται της παραδοσιακής εκπαίδευσης ως προς το ουσιώδες συστατικό της φυσικής συνεύρεσης εκπαιδευτών και εκπαιδευομένων, εντούτοις έχει πολλά άλλα ουσιαστικά πλεονεκτήματα τα οποία είναι:

- Συνδυασμός υπολογιστικών εργαλείων με τα δίκτυα επικοινωνιών. Επειδή τα δίκτυα επικοινωνιών που χρησιμοποιούνται είναι σήμερα κατά κανόνα υπολογιστικά δίκτυα, δηλαδή γεφυρώνουν την τεχνολογία των επικοινωνιών με την τεχνολογία των υπολογιστών, μπορούν πολύ αποτελεσματικά να εξυπηρετήσουν τη χρήση λογισμικού.

- Δεν υπάρχει η δέσμευση της συνύπαρξης στον ίδιο χώρο του εκπαιδευτή και του εκπαιδευομένου. Ο εκπαιδευτής μπορεί να βρίσκεται σε οποιοδήποτε σημείο του πλανήτη και να εκπαιδεύει ανθρώπους που μπορούν να βρίσκονται οπουδήποτε. Άρα υπάρχει ανεξαρτησία από τον χώρο και την απόσταση.

- Η δυνατότητα των κεντρικών υπολογιστικών συστημάτων να λειτουργούν διαρκώς και σε εικοσιτετράωρη βάση, δίνει την δυνατότητα στους εμπλεκόμενους, να προσαρμόσουν το εκπαιδευτικό τους πρόγραμμα στις ατομικές ανάγκες τους. Άρα υπάρχει ανεξαρτησία από το χρονικό πλαίσιο.

- Ελεύθερη επιλογή θεμάτων συζήτησης, εφόσον δίνεται η δυνατότητα να επιλέγουν από ένα κατάλογο τα θέματα ή τους ομιλητές που τους αφορούν τα ενδιαφέροντά τους.

- Η ανωνυμία και η συζήτηση με ψευδώνυμα. Πολλές φορές οι ανθρώποι καταλαμβάνονται από φόβο και άγχος όταν πρέπει να παρουσιάσουν τις απόψεις και τις ιδέες τους μιλώντας μπροστά σε ένα μεγάλο κοινό. Η σχετική ανωνυμία επιτρέπει σε
ανθρώπους κλειστούς ή ντροπαλούς να έχουν προστασία και κάλυψη όταν συμμετέχουν σε συζητήσεις μέσα στο δίκτυο.

• Η δυνατότητα διάθεσης διαφορετικών τρόπων παρουσίασης των πληροφοριών με πολυμέσα: βίντεο, κείμενο, εικόνες, γραφήματα, ομιλία, διαλογική συνεργασία.

• Ο συνεχής έλεγχος της μάθησης και της επίδοσης αποτελεί οργανικό στοιχείο τον προγράμματος. Χωρίς την κατανόηση κάθε βήματος ο μαθητής είναι αδύνατον να προχωρήσει παρακάτω.

• Δίνονται περισσότερες ευκαιρίες για ανθρώπους με αναπηρίες αλλά και ανθρώπους με οικονομική δυσπραγία.

• Λαμβάνοντας υπόψη την κρίση COVID-19 και τον αντίκτυπο της πανδημίας. Η εξ αποστάσεως εκπαίδευση ωφέλησε τα συστήματα εκπαίδευσης και κατάρτισης να συνεχίσουν να παρέχουν υπηρεσίες έτσι ώστε να υπάρξει όσο το δυνατόν καλύτερο αποτέλεσμα για το εκπαιδευτικό έργο.

3.3.4. Μειονεκτήματα της Εξ Αποστάσεως Εκπαίδευσης

Στα βασικά μειονεκτήματα της σχολικής εξ αποστάσεως εκπαίδευσης συγκαταλέγονται η έλλειψη της δια ζώσης επικοινωνίας που λαμβάνει χώρα στη συμβατική εκπαίδευση τόσο μεταξύ των εκπαιδευόμενων όσο και μεταξύ του διδάσκοντα και των εκπαιδευόμενων. Ακόμη, η αξιοπιστία του διαδικτύου ως μέσου διδασκαλίας ενδέχεται να αποτελέσει σημαντικό εμπόδιο στην εξασφάλιση της επικοινωνίας, καθώς
οποιοδήποτε τεχνικό πρόβλημα ή δυσλειτουργία έχει ως αποτέλεσμα τη διακοπή της επικοινωνίας, καθώς το διαδίκτυο αποτελεί τη βάση της τριπλής αλληλεπίδρασης που προαναφέραμε (Βασάλα, 2005, σελ. 80).

• Παράγοντας που επηρεάζει τη διαδικασία μάθησης, είναι η ελλιπής εξοικείωση με τη χρήση και τον χειρισμό των συστημάτων αυτών.
• Η προσωπική σχέση διδάσκοντος και διδασκομένου παραγκωνίζεται και σχεδόν καταργείται.
• Η διαδικασία εκπαίδευσης αυτοματοποιείται και γίνεται μηχανιστική.
• Η απόκτηση γνώσης σε ένα εικονικό περιβάλλον. Ο προβληματισμός που δημιουργείται είναι αν ο φοιτητής θα είναι αργότερα σε θέση να αντιμετωπίσει μια ανάλογη πραγματική κατάσταση π.χ ενός πειράματος.
• Η μηχανικότητα και η μονοτονία. Ο φοιτητής δουλεύει μόνος τον με τον ίδιο τρόπο κάθε φορά χωρίς τις εναλλαγές και τα απροσδόκητα που δημιουργούνται στην πραγματική διδασκαλία μέσα στην τάξη.
• Η κατάτμηση της προσφερόμενης γνώσης σε μικρές ενότητες και η οργάνωση της με αυστηρά λογική σειρά τυποποιεί τη σκέψη και δεν αφήνει χώρο για διαισθητική ή διορατική αντίληψη.
• Η συνεχής προσοχή που απαιτείται και διαρκής εξέταση στην οποία υποβάλλεται ο εκπαιδευόμενος μπορεί να τον οδηγήσουν σε: καταστάσεις έντονης πίεσης, υπερέντασης και κόπωσης.
• Επίσης σημαντικός περιοριστικός παράγοντας είναι το μεγάλο κόστος και ο χρόνος που απαιτείται για την δημιουργία των προγραμμάτων και τον περιεχομένου.

3.3.5. Κόστος ΕΞ' Αποστάσεως Εκπαίδευσης

Το κόστος για να εφαρμοστεί η εξ' αποστάσεως εκπαίδευση εξαρτάται από ορισμένες παραμέτρους.

• παραγωγής ψηφιακού υλικού: είναι το κόστος που απαιτείται για την προετοιμασία όλων του ψηφιακού περιεχομένου, που απαιτείται για τη σωστή απόδοση του μαθήματος.
• το κόστος ενοικίασης και χρήσης της τεχνολογικής υποδομής και του εξοπλισμού για τη μετάδοση των μαθημάτων και την επικοινωνία εκπαιδευτών και εκπαιδευομένων ανά ημέρα χρήσης. Ο παράγοντας αυτός πρέπει να υπολογιστεί σε σχέση με τον αριθμό των ημερών που χρησιμοποιείται.
• το κόστος ανά εκπαιδευτή που θα λάβει μέρος.

3.3.6. Κορονοϊος και εξ αποστάσεως εκπαίδευση

Από την πρώτη στιγμή που χρειάστηκε να παρθούν μέτρα για την αντιμετώπιση του COVID-19, με το κλείσιμο των σχολείων και των πανεπιστημίων σταμάτησε η εκπαιδευτική διαδικασία με φυσική παρουσία, αλλά έκεινη σχεδόν αμέσως σε όλες τις βαθμίδες της εκπαίδευσης, η εκπαίδευση εξ αποστάσεως. Αυτό είχε σαν αποτέλεσμα να μη χαθούν η σχολική και ακαδημαϊκή χρονιά για μαθητές και φοιτητές αντίστοιχα, εξαιτίας της εξάπλωσης του κορωνοϊού στην Ελλάδα.

«Τα πανεπιστήμια μας είναι σε καλή κατάσταση, από την άποψη ότι χρησιμοποιούσαν μεθόδους τηλε-εκπαίδευσης. Μία από αυτές είναι η ασύγχρονη βοηθητική, σε πλατφόρμες όπου μπορεί ο καθηγητής να ανεβάσει υλικό για το μάθημα, τις διαλέξεις και παρουσιάσεις και παράλληλα και τις σημειώσεις του μαθήματος και οι φοιτητές να υποβάλουν τις εργασίες τους», ανέφερε ο υφυπουργός παιδείας κ. Βασίλης Διγαλάκης, σε δηλώσεις του στην έκτακτη ενημερωτική εκπομπή του CNN NOW.

Το Υπουργείο Παιδείας έφερε την Πράξη Νομοθετικού Περιεχομένου που θεσπίστηκε από την κυβέρνηση στις 11 Μαρτίου 2020, έτσι ώστε όλα τα τμήματα να δίνουν τα προπτυχιακά και τα μεταπτυχιακά μαθήματα από απόσταση. Η τηλε-εκπαίδευση χαρακτηρίστηκε ως απαραίτητο εργαλείο, με γνώμονα τις ειδικές συνθήκες που βιώσαμε και το υπουργείο Παιδείας έχει ζητήσει ήδη από το σύνολο των πανεπιστημίων να προωθήσουν τα περισσότερα μαθήματα στην εξ αποστάσεως εκπαίδευση. "Με χαρά διαπιστώνω ότι τα πανεπιστήμια με ενθουσιασμό και συνείδηση της ευθύνης που έχουμε όλοι μας αυτή τη στιγμή προχωράνε οργανωμένα σε προετοιμασία γι’ αυτό τον λόγο κι
εμείς τους διαθέτουμε επιπλέον υλικό για σύγχρονη εκπαίδευση, σε περιβάλλον “εικονικής τάξης”, επισήμανε μεταξύ άλλων ο Βασίλης Διγαλάκης.

dημοσιεύτηκε στην Εφημερίδα της Κυβερνήσεως η απόφαση για την ολοκλήρωση του εαρινού εξαμήνου στα πανεπιστήμια καθώς και ο τρόπος διεξαγωγής των εξετάσεων. Σύμφωνα με αυτήν, οι εξετάσεις μπορούν να πραγματοποιηθούν με έναν ή με πολλούς διαφορετικούς τρόπους. Συγκεκριμένα, στις διατάξεις ορίζεται:

1) Εκπαιδευτική διαδικασία
2) Διεξαγωγή κλινικών και εργαστηριακών ασκήσεων
3) Πρακτική άσκηση
4) Χρόνος διενέργειας εξετάσεων
5) Τρόπος και μέσα διενέργειας εξετάσεων
6) Εξέταση με εξ αποστάσεως μεθόδους

Το Συμβούλιο των Κρατών Μελών της ΕΕ ενέκρινε συμπεράσματα για την αντιμετώπιση της κρίσης COVID-19 στην εκπαίδευση και την κατάρτιση με γραπτή διαδικασία. Όπως ανακοινώθηκε τα συμπεράσματα του Συμβουλίου αναγνωρίζουν τις κύριες προκλήσεις στα συστήματα εκπαίδευσης και κατάρτισης που προκαλούνται από την πανδημία COVID-19, καθώς και τις άμεσες απαντήσεις των κρατών μελών.

Καλούνται τα κράτη μέλη να εξετάσουν τις δυνατότητες καινοτομίας και ενός γρήγορου ψηφιακού μετασχηματισμού, καθώς και η περαιτέρω ανάπτυξη των ψηφιακών δεξιοτήτων και ικανοτήτων των εκπαιδευτικών και των εκπαιδευτών.

Λαμβάνοντας υπόψη τον αντίκτυπο της πανδημίας στην εκπαίδευση και την κατάρτιση σε ολόκληρη την ΕΕ, τα συμπεράσματα καλούν επίσης τα κράτη μέλη να συνεχίσουν να ανταλλάσουν πληροφορίες, εμπειρίες και βέλτιστες πρακτικές για το πώς τα συστήματα εκπαίδευσης και κατάρτισης μπορούν να προσαρμοστούν καλύτερα στην κατάσταση, ανάλογα με τις περαιτέρω εξελίξεις που σχετίζονται με Κρίση COVID-19.
3.3.7. Συμπεράσματα

Η εξ' αποστάσεως εκπαίδευση είναι για τα ελληνικά κυρίως δεδομένα, μια νέα μορφή εκπαίδευσης. Όμως στις ανεπτυγμένες χώρες χώρες η εξ' αποστάσεως εκπαίδευση είναι αρκετά διαδεδομένη και η εξάπλωσή της παίρνει μια νέα διάσταση με τη βοήθεια των νέων τεχνολογιών και των δικτύων. Έτσι η εκπαίδευση καθίσταται ένα κοινωνικό χαρτο ικανό για όλο και μεγαλύτερες ομάδες πληθυσμού.

Οι νέες τεχνολογίες στο χώρο της εκπαίδευσης μπορεί να δυσκολεύουν και πιθανά να προβληματίζουν πολλούς ανθρώπους, όμως αυτές δίνουν δυνατότητες στην εκπαίδευση. Αναγνωρίζεται η ανάγκη διασφάλισης της ένταξης και των ίσων ευκαιριών καθώς και την πρόσβαση σε υψηλής ποιότητας εκπαίδευση και κατάρτιση για όλους και αυτό μπορεί να επιτευχθεί μέσω της εξ' αποστάσεως εκπαίδευσης.

Η σχέση δασκάλου σπουδαστή στην ουσία δεν αλλάζει αλλά αποκτά νέα μορφή. Η επικοινωνία γίνεται με ηλεκτρονικά μηνύματα ή μέσα από κάμερες όμως παραμένει εξίσου αποτελεσματική και ουσιαστική, όπως πρέπει να είναι η σχέση δασκάλου-σπουδαστή. Ο εκπαιδευτής παραμένει κοντά στον εκπαιδευόμενο αφού γκράζεται τα προβλήματα του, τις δυσκολίες του και είναι πρόθυμος να βοηθήσει για τα ξεπεράσει. Αρά ο ρόλος του εκπαιδευτή δεν μειώνεται αλλά αλλάζει τρόπο εφαρμογής. Χωρίς τη βοήθεια του ή άλλες ουσιώδεις επικοινωνίες θα ήταν δύσκολο να λειτουργήσουν σωστά. Αλλιώτες ο σπουδαστής χρησιμοποιεί και μέσο την τεχνολογία όμως αυτό δεν επηρεάζει το σκοπό που είναι η γνώση και η μάθηση.

Με βάση τα παραπάνω είναι φανερό ότι η εξ' αποστάσεως εκπαίδευση είναι μια ανθρωποκεντρική μορφή εκπαίδευσης, την οποία χρησιμοποιεί σαν μέσο την τεχνολογία όμως αυτό δεν επηρεάζει το σκοπό που είναι η γνώση και η μάθηση. Κάποια προβλήματα παρουσιάζονται στην αλληλεπίδραση του ανθρώπου με την τεχνολογία, αλλά αυτά οφείλονται κυρίως στους μάθητες και τις εφαρμογές της, μαθητής. Η τεχνολογία και οι εφαρμογές ουσιαστικά μαθητή χρησιμοποιούν τη σχέση εκπαιδευτή- μαθητή.

Στο μέλλον είναι πιθανό να μη διαχωρίζεται η εξ' αποστάσεως εκπαίδευση από την παραδοσιακή και μάλλον θα συνυπάρχουν σαν αλληλένδετες μέθοδοι εκπαίδευσης.
Κάποιοι έχουν ήδη προφητεύσει την πλήρη αντικατάσταση του εκπαιδευτικού από υπολογιστές, κάτι πολύ δύσκολο να συμβεί, γιατί όσο αποτελεσματική και να είναι η σχέση ανθρώπου μηχανής σε καμία περίπτωση δεν μπορεί να αντικαταστήσει την αμεσότητα των ανθρωπίνων σχέσεων. Σίγουρα οι νέες τεχνολογίες εξελίσσονται ταχύτατα, αλλά προφανώς το εκπαιδευτικό σύστημα είναι θα τις υιοθετήσει και θα τις προσαρμόσει στις ανάγκες του.

Επειδή οι νέες τεχνολογίες επηρεάζουν τις δομές μάθησης και διαμορφώνουν νέα πλαίσια εκπαίδευσης, κυρίως στα συστήματα εκπαίδευσης από απόσταση. Τα συστήματα αυτά απευθύνονται σε εκπαιδευόμενους που βρίσκονται σε απομακρυσμένες - απρόσιτες περιοχές, καθώς και σε ενήλικες εργαζόμενους που επιθυμούν ή τους επιβάλλεται κατά κάποιο τρόπο η βελτίωση της ανταγωνιστικότητάς τους, αλλά δεν μπορούν να συμμετέχουν σε συμβατικές μορφές εκπαίδευσης.

Τέλος συμπεραίνεται ότι σχεδόν όλα τα συστήματα παροχής εξ αποστάσεως εκπαίδευσης παρέχουν παρόμοιες δυνατότητες με μικρές διαφορές που όμως κάνουν τη διαφορά. Έτσι πρέπει να είμαστε πολύ προσεκτικοί στην επιλογή τον κατάλληλο συστήματος ιδιαίτερα όταν απευθυνόμαστε σε ένα ειδικά περιβάλλον όπως είναι η διδασκαλία στην παροχή εκπαίδευσης.

Τα κριτήρια επιλογής εξαρτώνται:

α) από το αποτέλεσμα πού θέλουμε να πετύχουμε
β) τις λειτουργικές δυνατότητες
γ) τους μηχανισμούς επικοινωνίας
δ) τους μηχανισμούς αξιολόγησης που θέλουμε να παρέχει
ε) τις απαιτήσεις και τις ιδιαιτερότητες των τελικών χρηστών όσο αφορά την οργάνωση της δομής τον περιεχομένου.

Στη εκπαιδευτικό διαφόρων ειδικοτήτων για να εγκαθίσταν και να παράγουν το υλικό τους
4. Μεθοδολογία και στόχοι έρευνας

Η παρούσα έρευνα εξετάζει την δυνατότητα συσχέτισης της βαθμολογίας των πανελληνίων εξετάσεων για πρόσβαση στο εκπαιδευτικό ίδρυμα με την απόδοση των φοιτητών σε συγκεκριμένο μάθημα του πρώτου εξαμήνου. Διερευνάται με αυτόν τον τρόπο η μετάβαση από την δευτεροβάθμια στην τριτοβάθμια εκπαίδευση με στόχο να προληφθούν ομάδες φοιτητών υψηλού κίνδυνου. Βασισμένοι στις τρέχουσες κοινωνικοοικονομικές συνθήκες που αναφέρθηκαν στα κεφάλαια 3.1, 3.2, 3.3. Εξετάζεται παράλληλα το κατά πόσον κάποια καινοτόμα μέτρα τα οποία λήφθηκαν στην εκπαιδευτική διαδικασία συνέβαλλαν στην καλύτερη απόδοση των φοιτητών στο συγκεκριμένο μάθημα.

5. ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Στην αρχή του πειράματος εξορύχτηκαν τα δεδομένα που χρησιμοποιήθηκαν για την διεξαγωγή της επεξεργασίας. Τα δεδομένα αυτά προέρχονται από το αρχείο του Πανεπιστημίου Δυτικής Αττικής, Τμήμα Μηχανολογίας και αφορούν στο μάθημα μηχανολογική CAD 1 πρώτου εξαμήνου. Πρόκειται για αυτοτέλεις μάθημα εργαστηρίου στο οποίο εγγράφονται περίπου 300 φοιτητές ανά εξάμηνο. Λόγο του πλήθους των φοιτητών και της φύσης του μαθήματος οι διαλέξεις διεξάγονται σε 11 τμήματα. Το δείγμα υπό εξέταση λήφθηκε από 3 τμήματα και οι καινοτόμες μέθοδοι εφαρμόστηκαν σε 5 τμήματα. Ύστερα από εκτίμηση των δεδομένων που συλλέχτηκαν καταλήξαμε ότι πληρότητα δεδομένων είχαμε από 2 εργαστηριακά τμήματα καθότι στα άλλα 2 υπήρχαν ελλείψεις από τα δεδομένα που μας προσκόμισαν οι φοιτητές.

5.1. Οι καινοτόμες μέθοδοι σε πειραματικό στάδιο:

5.1.1. Ομαδική εργασία στα μέσα του εξαμήνου

(ανάθεση πριν τις διακοπές των Χριστουγέννων): Οι φοιτητές χωριστήκαν σε ομάδες 4 ατόμων και αναλάβανε την αποτύπωση τμημάτων μεταλλικής κατασκευής βιβλιοθήκης του πανεπιστημίου δυτικής αττικής με στόχο την καθ ύψος επέκταση του κτιρίου της βιβλιοθήκης.
Πρόκειται για κατασκευή που περιλαμβάνει κοχλίες, περικόχλια, νευρώσεις συγκολλήσεις, κοχλιοσυνδέσεις, στραντζαριστές λαμαρίνες στη σκάλα και προκατασκευασμένα τμήματα.

Εικόνα 1: https://moodle.uniwa.gr/course/view.php?id=454
Με βάση αυτή την κατασκευή που φαίνεται στις φωτογραφίες σχεδιάστηκαν τα τμήματα που έχουν επιλεγεί στο λογισμικό ηλεκτρονικής σχεδίασης (CAD) σε δυο διαστάσεις, τοποθετήθηκαν διαστάσεις και τηρήθηκαν οι κανόνες του εργαστηρίου (layers, limits, dimstyles, linetypes). Οι οδηγίες για τις μετρήσεις δόθηκαν επιτόπου από την εκπαιδευτική ομάδα και οι φοιτητές έπρεπε να παραδώσουν εντός μηνός την εργασία τους σε ατομικό επίπεδο.
Αποτελέσματα που δόθηκαν μέσω του λογισμικού σχεδίασης CAD

Εικόνα 3: https://moodle.uniwa.gr/course/view.php?id=454

Εικόνα 4: https://moodle.uniwa.gr/course/view.php?id=454
Εικόνα 5: https://moodle.uniwa.gr/course/view.php?id=454

Εικόνα 6: https://moodle.uniwa.gr/course/view.php?id=454
Στόχος της εργασίας είναι να μπορέσουν οι φοιτητές να συνεργαστούν ομαδικά ανταλλάσσοντας μεταξύ τους πληροφορίες ως προς την λήψη των μετρήσεων

Σε ατομικό επίπεδο να σχεδιάσουν με την βοήθεια του λογισμικού εφαρμόζοντας όλες τις εντολές και το θεωρητικό κομμάτι που έχουν μάθει μέχρι εκείνο το σημείο

5.1.2. Τεστ προσομοίωσης εξέτασης:
Έχει διαπιστωθεί ότι οι φοιτητές του πρώτου εξαμήνου παρουσιάζουν μεγάλο αγχός κατά την διάρκεια της εξέτασης διότι δεν είναι εξοικειωμένοι με την διαδικασία. Προσπαθώντας να ελαχιστοποιηθεί ο παράγων αγχος ορίστηκε μια εβδομάδα πριν την τελική εξέταση ένα τεστ προσομοίωσης τελικής εξέτασης. Το τεστ έγινε με τις ίδιες συνθήκες που θα έχουν στην τελική εξέταση (αίθουσα, χρόνος εξέτασης, δυσκολία θέματος εξέτασης). Η απόδοσή τους σε αυτό το προγνωστικό τεστ συσχετίζεται στην παρούσα ερευνά με την τελική τους βαθμολογία.

5.1.3. Άλλοι παράγοντες που συσχετίστηκαν

5.1.3.1. Εργασίες κατά την διάρκεια του εξαμήνου:
Οι φοιτητές κατά την διάρκεια του εξαμήνου οφείλουν μετά από κάθε διάλεξη να υποβάλλουν εργασία στην οποία βαθμολογούνται. Οι βαθμολογίες των φοιτητών συσχετίστηκαν και αυτοί με τους παραπάνω παράγοντες.

5.1.3.2. Βαθμοί πανελληνίων εξετάσεων:
ο βαθμός που έγραψαν στις πανελλαδικές στα μαθήματα χημεία, φυσική, έκθεση και μαθηματικά.

Ακόμη, περιλαμβάνει τον συνολικό βαθμό των εργασιών του καθενός, τον βαθμό ενός τεστ προσομοίωσης καθώς και τον τελικό βαθμό που πήρε ο κάθε φοιτητής στο τέλος του εξαμήνου. Το 30% του τελικού βαθμού προκύπτει από τις εργασίες και το υπόλοιπο 70% από την τελική εξέταση. Στη συνέχεια δημιουργήθηκε μια στήλη με τον μέσο όρο των τεσσάρων μαθημάτων (Μ.Ο.
χημεία, φυσική, έκθεση, μαθηματικά), άλλες 4 που περιλαμβάνουν το Μ.Ο. που γράφανε οι φοιτητές στα μαθήματα των πανελλαδικών εκείνη την χρονιά (Μ.Ο. Χημείας Παν, Μ.Ο. Φυσικής Παν, Μ.Ο. Έκθεσης Παν, Μ.Ο. Μαθηματικών Παν) καθώς και άλλη μία που υπολογίζει τα συνολικά τους μόρια (ΣΥΝΟΛΙΚΑ ΜΟΡΙΑ). Τα συνολικά μόρια υπολογίστηκαν μέσω της εφαρμογής του site «https://www.poukamisas.gr/calculator/#» και συμπεριλήφθηκαν όλοι οι συντελεστές βαρύτητας των μαθημάτων έτσι ώστε τα μόρια να βρεθούν με ακρίβεια. Ύστερα μέσω της συνάρτησης Correl του λογισμικού excel έγιναν οι παρακάτω συσχέτισεις:

<table>
<thead>
<tr>
<th>ΧΗΜΕΙΑ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>ΦΥΣΙΚΗ/ ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>ΕΚΘΕΣΗ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>ΜΑΘ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>Μ.Ο. χημεία,φυσική,έκθεση,μαθηματικά/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>ΕΡΓΑΣΙΕΣ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μ.Ο. Χημείας Παν.Εργασίες</td>
<td>Μ.Ο. Φυσικής Παν.Εργασίες</td>
<td>Μ.Ο. Έκθεσης Παν.Εργασίες</td>
<td>Μ.Ο. Μαθηματικών Παν.Εργασίες</td>
<td>Μ.Ο. Χημείας Παν./Προσομοίωση</td>
<td>Μ.Ο. Φυσικής Παν./Προσομοίωση</td>
<td>Μ.Ο. Έκθεσης Παν./Προσομοίωση</td>
</tr>
</tbody>
</table>

Η συνάρτηση Correlου χρησιμοποιήθηκε επιστρέφει το συντελεστή συσχέτισης δύο περιοχών κελιών. Χρησιμοποιείται, για να προσδιοριστεί η σχέση ανάμεσα σε δύο
ιδιότητες. Για παράδειγμα, μπορεί να εξεταστεί σχέση ανάμεσα στις μέσες θερμοκρασίες μιας τοποθεσίας και στη χρήση συσκευών κλιματισμού.

Τα ορίσματα που χρησιμοποιούνται θα πρέπει να είναι είτε αριθμοί είτε ονόματα, πίνακες ή αναφορές που περιέχουν αριθμούς.

Αν ένα όρισμα που είναι πίνακας ή αναφορά περιέχει κείμενο, λογικές τιμές ή κενά κελιά, αυτές οι τιμές ανανοώνται. Όμως, τα κελιά με τιμή μηδέν συμπεριλαμβάνονται.

Όσο ο συντελεστής συσχέτισης είναι πιο κοντά στο + 1 ή -1, υποδηλώνει θετική (+ 1) ή αρνητική (-1) συσχέτιση μεταξύ των πινάκων. Θετική συσχέτιση σημαίνει ότι εάν οι τιμές σε έναν πίνακα αυξάνονται, αυξάνονται και οι τιμές του άλλου πίνακα. Ένας συντελεστής συσχέτισης που είναι πιο κοντά στο 0, υποδηλώνει καμία ή αδύναμη συσχέτιση.

Αν τα ορίσματα array1 και array2 έχουν διαφορετικό αριθμό σημείων δεδομένων, η CORREL επιστρέφει τιμή σφάλματος #Δ/Υ.

Αν οποιοδήποτε από τα ορίσματα array1 και array2 είναι κενό, ή αν το σ (η τυπική απόκλιση) των τιμών τους είναι ίσο με μηδέν, η CORREL επιστρέφει τιμή σφάλματος #ΔΙΑΙΡ/0! (όπως στην α περίπτωση).

Η εξίσωση για το συντελεστή συσχέτισης είναι:

\[
Correl(X, Y) = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}
\]

όπου

\(\bar{x}\) and \(\bar{y}\)

είναι οι μέσες τιμές δείγματος AVERAGE(πίνακας1) και AVERAGE(πίνακας2).

Μετά από δοκιμές παρατηρήθηκε ότι η συνάρτηση correlβγάζει την ίδια συσχέτιση είτε οι 2 στήλες δεδομένων βρίσκονται στην ίδια κλίμακα (πχ βρίσκονται στην...
κλίμακα των 20) είτε σε διαφορετική (πχ η μία στήλη στην κλίμακα των 10 και η άλλη στων 20).

Όλα τα παραπάνω έγιναν 3 φορές διότι το αρχείο με τις βαθμολογίες είχε κάποια κενά και τα έτσι θέλαμε να δημιουργήσουμε 3 διαφορετικές περιπτώσεις α) κρατώντας το ως έχει β) σβήνοντας τις γραμμές που έχουν κενά κελία γ) συμπληρώνοντας τα κενά κελία με τον μέσο όρο της αντίστοιχης στήλης στην οποία βρίσκονται.

Στη συνέχεια δημιουργήθηκαν διαγράμματα διαφορετικά για κάθε περίπτωση τα οποία έχουν σε γραμμή τάσης τον τελικό βαθμό και σε ιστόγραμμα τα μαθήματα χημεία, φυσική, έκθεση, μαθηματικά, Μ.Ο. χημεία, φυσική, έκθεση, μαθηματικά, εργασίες, Μ.Ο. μαθηματικών πανελληνίων, Μ.Ο. φυσικής πανελληνίων, Μ.Ο. έκθεσης πανελληνίων, Μ.Ο. χημείας πανελληνίων και συνολικά μόρια.

Στην περίπτωση β δημιουργήθηκε ένα έξτρα διάγραμμα που ονομάστηκε δοκιμή, με τις στήλες ΣΥΝΟΛΙΚΑ ΜΟΡΙΑ και ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ στις οποίες προστέθηκαν 2 κελιά στην κάθε μία. Έγινε μία δοκιμή στην οποία προστέθηκε ένας φοιτητής που εισήλθε στην σχολή με υψηλούς βαθμούς (18.000 μόρια) και ένας με χαμηλούς (8.000 μόρια). Παράλληλα και οι 2 φοιτητές θεώρησα ότι έχουν τον ίδιο τελικό βαθμό (τον Μ.Ο. όλων των υπόλοιπων τελικών βαθμών) με σκοπό το διάγραμμα που δημιουργήθηκε να εμφανίσει πιθανή συσχέτιση δεδομένων συγκεκριμένα για τα 2 αυτά άτομα.

5.2. α) Περίπτωση-Πίνακες δεδομένων με κενά και συσχέτισεις

Πίνακες Επεξεργασίας

Πίνακας 1α

<table>
<thead>
<tr>
<th>ΧΗΜΕΙΑ</th>
<th>ΦΥΣΙΚΗ</th>
<th>ΕΚΘΕΣΗ</th>
<th>ΜΑΘΗΜΑΤΙΚΑ</th>
<th>Μ.Ο. χημεία, φυσική, έκθεση, μαθηματικά</th>
<th>ΕΡΓΑΣΙΕΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,5</td>
<td>17,5</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>13,8</td>
<td>13,5</td>
<td>14,5</td>
<td>14,45</td>
<td>0</td>
</tr>
<tr>
<td>8,7</td>
<td>13,3</td>
<td>15,3</td>
<td>14,7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>11</td>
<td>18</td>
<td>13,5</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>14,6</td>
<td>14,9</td>
<td>13,3</td>
<td>13,95</td>
<td>8,4</td>
</tr>
</tbody>
</table>
Πίνακας 2α

<table>
<thead>
<tr>
<th>ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ</th>
<th>ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>Μ.Ο. Χημείας Πανελληνίων 2019</th>
<th>Μ.Ο. Φυσικής Πανελληνίων 2019</th>
<th>Μ.Ο. Έκθεσης Πανελληνίων 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>6,5</td>
<td>10,82</td>
<td>11,40</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2,2</td>
<td>10,82</td>
<td>11,40</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>7</td>
<td>10,82</td>
<td>11,40</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10,82</td>
<td>11,40</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5</td>
<td>10,82</td>
<td>11,40</td>
</tr>
<tr>
<td></td>
<td>7,5</td>
<td>5</td>
<td>10,82</td>
<td>11,40</td>
</tr>
<tr>
<td>Μ.Ο. Μαθηματικών Πανελληνίων 2019</td>
<td>ΣΥΝΟΛΙΚΑ ΜΟΡΙΑ</td>
<td>ΕΡΓΑΣΙΕΣ ΣΤΑ 20</td>
<td>ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ 20</td>
<td>ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ ΣΤΑ 20</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>10,05</td>
<td>15,975</td>
<td>18</td>
<td>18</td>
<td>16,5</td>
</tr>
<tr>
<td>10,05</td>
<td>14,411</td>
<td>0</td>
<td>11</td>
<td>12,2</td>
</tr>
<tr>
<td>10,05</td>
<td>13,242</td>
<td>15</td>
<td>11,5</td>
<td>17</td>
</tr>
<tr>
<td>10,05</td>
<td>14,120</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10,05</td>
<td>13,911</td>
<td>18,4</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>10,05</td>
<td>13,563</td>
<td>17,2</td>
<td>17,5</td>
<td>15</td>
</tr>
<tr>
<td>10,05</td>
<td>14,114</td>
<td>18,2</td>
<td>20</td>
<td>18,5</td>
</tr>
</tbody>
</table>
Αποτελέσματα πειραματικής διαδικασίας - συσχέτισεων

<table>
<thead>
<tr>
<th>ΧΗΜΕΙΑ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>0,041</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΦΥΣΙΚΗ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>-0,114</td>
</tr>
<tr>
<td>ΕΚΘΕΣΗ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>0,129</td>
</tr>
<tr>
<td>ΜΑΘ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>0,100</td>
</tr>
<tr>
<td>Μ.Ο.χημεία,φυσική,</td>
<td>#ΔΙΑΙΡ/0!</td>
</tr>
<tr>
<td>Έκθεση, μαθηματικά/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>0,635</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>0,827</td>
</tr>
<tr>
<td>ΕΡΓΑΣΙΑ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td></td>
</tr>
<tr>
<td>Συνολικά Μόρια/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>-0,058</td>
</tr>
</tbody>
</table>

Πίνακας 5a

<table>
<thead>
<tr>
<th>Μ.Ο. Χημείας Παν./ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μ.Ο. Φυσικής Παν./ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>#ΔΙΑΙΡ/0!</td>
</tr>
<tr>
<td>Μ.Ο. Έκθεσης Παν./ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>0</td>
</tr>
<tr>
<td>Μ.Ο. Μαθηματικών Παν./ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>0</td>
</tr>
</tbody>
</table>

Πίνακας 6a

<table>
<thead>
<tr>
<th>Μ.Ο. Χημείας Παν./Εργασίες</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μ.Ο. Φυσικής Παν./Εργασίες</td>
<td>#ΔΙΑΙΡ/0!</td>
</tr>
<tr>
<td>Μ.Ο. Έκθεσης Παν./Εργασίες</td>
<td>0</td>
</tr>
<tr>
<td>Μ.Ο. Μαθηματικών Παν./Εργασίες</td>
<td>0</td>
</tr>
<tr>
<td>Συνολικά μόρια/Εργασίες</td>
<td>0,050</td>
</tr>
</tbody>
</table>

Πίνακας 7a

<table>
<thead>
<tr>
<th>Μ.Ο. Χημείας Παν./Προσομοίωση</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μ.Ο. Φυσικής Παν./Προσομοίωση</td>
<td>0</td>
</tr>
<tr>
<td>Μ.Ο. Έκθεσης Παν./Προσομοίωση</td>
<td>0</td>
</tr>
<tr>
<td>Μ.Ο. Μαθηματικών Παν./Προσομοίωση</td>
<td>0</td>
</tr>
</tbody>
</table>

Πίνακας 8a

<table>
<thead>
<tr>
<th>ΧΗΜΕΙΑ/ΕΡΓΑΣΙΕΣ</th>
<th>0,459</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΦΥΣΙΚΗ/ΕΡΓΑΣΙΕΣ</td>
<td>-0,003</td>
</tr>
<tr>
<td>ΕΚΘΕΣΗ/ΕΡΓΑΣΙΕΣ</td>
<td>0,174</td>
</tr>
<tr>
<td>ΜΑΘ/ΕΡΓΑΣΙΕΣ</td>
<td>0,094</td>
</tr>
<tr>
<td>Μ.Ο. χημεία, φυσική, έκθεση, μαθηματικά/ΕΡΓΑΣΙΕΣ</td>
<td>#####</td>
</tr>
</tbody>
</table>

Πίνακας 9a
Με βάση τα αποτελέσματα που προέκυψαν από την συνάρτηση correl σχετικά με το τι επηρεάζει περισσότερο τον τελικό βαθμό, την μεγαλύτερη συσχέτιση την έχουν οι στήλες ΕΡΓΑΣΙΑ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ με 0,827 (πολύ κοντά στο 1) και ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ 0,635. Ακόμη η ΦΥΣΙΚΗ φαίνεται να επηρεάζει αρνητικά και η ΈΚΘΕΣΗ να έχει την τρίτη μεγαλύτερη συσχέτιση. ΧΗΜΕΙΑ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ και ΜΑΘ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ έχουν τιμές κοντά στο μηδέν και μικρότερες από ΕΚΘΕΣΗ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ παρόλο που το μάθημα δεν είναι θεωρητικό. Οι τιμές του πίνακα 4α(εκτός αυτών που έχουν #ΔΙΑΙΡ/0!) δεν έχουν καμία συσχέτιση με τον τελικό βαθμό του μαθήματος CAD.

Στους πίνακες 5α και 6α αποδεικνύεται ότι ο βαθμός που έχουν οι φοιτητές στις εργασίες και στο τεστ προσομοίωσης δεν έχει σχέση με τον μέσο όρο που έγραψαν οι φοιτητές στις πανελλαδικές εκείνη την χρονιά στα μαθήματα έκθεσης, φυσικής, χημείας και μαθηματικών.

Αντίθετα στους πίνακες 7α και 8α οι εργασίες επηρεάζονται λίγο από την βαθμό χημείας και ο βαθμός του τεστ προσομοίωσης ελάχιστα από το βαθμό της φυσικής.

Διαγράμματα

Όλα τα διαγράμματα έχουν την ίδια κλίμακα για να είναι πιο ακριβή τα αποτελέσματα. Σε όλες τις περιπτώσεις η μέγιστη τιμή και των 2 στηλών που χρησιμοποιούνται είναι ή το 10 ή το 20. Γι αυτό τον λόγο έχουν δημιουργηθεί κάποιες επιπλέον στήλες που χρησιμοποιούνται στην δημιουργία των διαγραμμάτων.

Διάγραμμα 1α
Αποτέλεσμα συνάρτησης correl: 0,041

Σε αυτό το διάγραμμα παρατηρείται ότι σε λίγους φοιτητές σχετίζεται ο βαθμός που πήραν στην χημεία με τον τελικό τους βαθμό. Πιο συγκεκριμένα αυτό φαίνεται στους φοιτητές με τους αριθμούς 6,14,20 και 25. Κατά συνέπεια, ο παράγων “βαθμός χημείας στις πανελληνίες εξετάσεις” δεν έχει άμεση συσχέτιση με τον τελικό βαθμό.

Διάγραμμα 2α
Αποτέλεσμα συνάρτησης correl: -0,014

Στο διάγραμμα φυσικής και τελικού βαθμού στα 20 η γραμμή τάσης σχεδόν ταυτίζεται με πολλά σημεία του ιστογράμματος (2,5,11,14,25). Διαπιστώνουμε, ότι ενώ στο διάγραμμα διαφαίνεται ταύτιση των 2 παραμέτρων σε 6 φοιτητές, η απόκλιση παραμένει μεγάλη στο μεγαλύτερο ποσοστό των φοιτητών. Το παραπάνω εξηγείται λογικά εφόσον έχουμε μικρό κομμάτι δείγματος το οποίο δεν συμβαδίζει με την τιμή της συνάρτησης Correl.

Διάγραμμα 3α
Αποτέλεσμα συνάρτησης correl: 0,129

Σε αυτό το διάγραμμα μπορούμε να δούμε ότι υπάρχουν τα περισσότερα κοινά σημεία ιστόγραμματος και γραμμής τάσης από όλα τα μαθήματα. Κατά συνέπεια, διαφαίνεται τόσο γραφικά (από το ιστόγραμμα) όσο και στατιστικά (correl) ότι η έκθεση ως μεταβλητή είναι το μάθημα που καθορίζει περισσότερο την πρόοδο των φοιτητών στο μάθημα του CAD.

Διάγραμμα 4α
Αποτέλεσμα συνάρτησης correg 0,100

Στο διάγραμμα 4α υπάρχουν πολύ λίγα σημεία επαφής ιστογράμματος και γραμμής τάσης, παρόλα αυτά είναι το δεύτερο σε σειρά μάθημα που καθορίζει την πρόοδο στο μάθημα.

Διάγραμμα 5α

Βαθμός χημείας, φυσικής, έκθεσης και μαθηματικών πανελληνίων - τελικός βαθμός/20
Αποτέλεσμα συνάρτησης correl: #Διαιρ/0!

Παρατηρώντας το διάγραμμα που έχει τον Μ.Ο. χημεία, φυσική, έκθεση, μαθηματικά και τελικός βαθμός στα 20 βλέπουμε ότι υπάρχουν μόλις 3 φοιτητές στους οποίους έπαιξε ρόλο ο Μ.Ο. αυτών των μαθημάτων. Επίσης δεν έχουμε αποτέλεσμα από την συνάρτηση correl για αυτή την συσχέτιση επειδή λείπουν δεδομένα από τα κελιά και βγαίνει το μήνυμα #ΔΙΑΙΡ/0!. Οπότε μέσω του διαγράμματός και χωρίς την βοήθεια της συνάρτησης μπορούμε να κατανοήσουμε την συσχέτιση των 2 συγκεκριμένων δεδομένων. Καταλήγουμε λοιπόν ότι ο βαθμός συσχέτισης είναι επίσης χαμηλός.

Διάγραμμα 6α

![Diagram](image)

Αποτέλεσμα συνάρτησης correl: 0,827

Σε αυτό το διάγραμμα παρατηρούμε ότι στο μεγαλύτερο πλήθος των φοιτητών οι κορυφές από τις στήλες των ιστογραμμάτων συμπίπτουν με την γραμμή τάσης. Ακόμη μπορούμε να δούμε ότι το δείγμα πιθανόν να είχε καλύτερη συσχέτιση εάν 4 από τους 27 στο σύνολο είχαν γράψει μεγαλύτερο βαθμό στις εργασίες. Το παραπάνω εξηγείται με τη λογική, καθότι οι φοιτητές που παρέδωσαν εργασίες είχαν ευνοϊκή βαθμολόγηση, οπότε η απόκλιση από το βαθμό των εργασιών είναι μεγαλύτερη από τις άλλες περιπτώσεις όπου οι φοιτητές με καλό βαθμό στις εργασίες έγραψαν καλά στο τελικό τεστ. Επιπροσθέτως είναι μόνο 2 οι περιπτώσεις που η διαφορά βαθμού εργασίας είναι κατά μία μονάδα μεγαλύτερη από τον τελικό βαθμό.
Διάγραμμα 7α

Βαθμός του τεστ προσομοίωσης - τελικός βαθμός/20

Αποτέλεσμα συνάρτησης correl: 0,635

Στο παρακάτω διάγραμμα παρατηρούμε μία εικόνα παρόμοια με του διαγράμματος 6α. Όλοι οι φοιτητές εκτός από ελάχιστες περιπτώσεις έγραψαν σχεδόν τον ίδιο βαθμό στο τεστ προσομοίωσης και στον τελικό βαθμό. Παρόλα αυτά στο σύνολο τους έχουν μικρότερο τελικό βαθμό συγκριτικά με το τεστ προσομοίωσης. Το παραπάνω εξηγείται λόγω του υψηλότερου συντελεστή δυσκολίας που εφαρμόστηκε στο τελικό τεστ, σε σχέση με αυτό του προγνωστικού.

Σε κάθε περίπτωση, τεκμηριώνεται τόσο μέσω ιστογράμματος όσο και της συνάρτησης correl ότι ο παράγων “τεστ προσομοίωσης” χρησιμοποιεί δεύτερο υψηλότερο βαθμό συσχέτισης, και η αναγκαιότητα μιας τέτοιας διαδικασίας κρίνεται εξαιρετικά αποδοτική για τους φοιτητές του πρώτου έτους που δεν έχουν εμπειρία σε εξετάσεις στο πανεπιστήμιο.

Διάγραμμα 8α
Αποτέλεσμα συνάρτησης correl: 0

Από το παραπάνω διάγραμμα προκύπτει το συμπέρασμα ότι στο Μ.Ο. χημείας Πανελληνίων για το 2019 δεν υπάρχει καμία συσχέτιση με τον τελικό βαθμό. Μόνο στον φοιτητή 2 τυχαίνει να βρίσκονται κοντά οι δύο αυτές τιμές αλλά και πάλι δεν μπορεί να αξιολογηθεί στο σύνολο του δείγματος.

Διάγραμμα 9α
Αποτέλεσμα συνάρτησης correl: #Διαιρ/0!

Στο παραπάνω διάγραμμα εξακολουθεί να μην υπάρχει σχέση μεταξύ του Μ.Ο. φυσικής πανελληνίων και του τελικού βαθμού όπως και στο διάγραμμα 8α. Μόνο ο φοιτητής 2 τυχαίνει και πάλι να έχει πολύ κοντινή τιμή ιστογράμματος και γραμμής τάσης. Επίσης το συνδυασμένο αυτό διάγραμμα μας δίνει την μοναδική εικόνα για μια πιθανή συσχέτιση καθώς και σε αυτή την περίπτωση η συνάρτηση correl δεν είχε αποτέλεσμα εξαίτιας κενών στο δείγμα.

Διάγραμμα 10α
Αποτέλεσμα συνάρτησης `correl`: 0

Το διάγραμμα αυτό μας δείχνει ότι Μ.Ο. Έκθεσης Πανελληνίων 2019 συμπίπτει τον τελικό βαθμό στους φοιτητές 14 και 27 και πλησιάζει στον 2. Στο σύνολο του όμως δεν προκύπτει κάποια συσχέτιση.

Διάγραμμα 11α
Λέσος όρος μαθηματικών πανελληνίων έτους 2019 - τελικός βαθμός/20

Αποτέλεσμα συνάρτησης correl: 0

Στο διάγραμμα αυτό απέχουν αρκετά όλες οι τιμές του Μ.Ο. Μαθηματικών πανελλήνιων 2019 με τους τελικούς βαθμούς και δεν υπάρχει καμία συσχέτιση σε κανέναν φοιτητή του δείγματος.

Διάγραμμα 12α
Αποτέλεσμα συνάρτησης $correl$: -0,058

Στο παραπάνω διάγραμμα ελάχιστες τιμές τελικών βαθμών συμπίπτουν με τα συνολικά μόρια όποτε θεωρούμε και πάλι ότι δεν υπάρχει συσχέτιση.

5. 3. β) Περίπτωση-Πίνακες δεδομένων που έχουν σβηστεί οι φοιτητές με τουλάχιστον ένα κενό στις βαθμολογίες τους και συσχετίσεις

Πίνακας Επεξεργασίας

Πίνακας 1β

<table>
<thead>
<tr>
<th>ΧΗΜΕΙΑ</th>
<th>ΦΥΣΙΚΗ</th>
<th>ΕΚΘΕΣΗ</th>
<th>ΜΑΘΗΜΑΤΙΚΑ</th>
<th>Μ.Ο. χημεία,φυσική, έκθεση,μαθηματικά</th>
<th>ΕΡΓΑΣΙΕΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,5</td>
<td>17,5</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>13,8</td>
<td>13,5</td>
<td>14,5</td>
<td>14,45</td>
<td>0</td>
</tr>
<tr>
<td>8,7</td>
<td>13,3</td>
<td>15,3</td>
<td>14,7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>11</td>
<td>18</td>
<td>13,5</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>14,6</td>
<td>14,9</td>
<td>13,3</td>
<td>13,95</td>
<td>8,4</td>
</tr>
<tr>
<td>14</td>
<td>12,5</td>
<td>14,5</td>
<td>13,6</td>
<td>13,65</td>
<td>7,2</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>13,6</td>
<td>15,8</td>
<td>13,85</td>
<td>8,2</td>
</tr>
<tr>
<td>Πίνακας 2β</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14,7</td>
<td>15,5</td>
<td>15,1</td>
<td>16,4</td>
<td>15,425</td>
<td>8,4</td>
</tr>
<tr>
<td>13,9</td>
<td>15,3</td>
<td>15,8</td>
<td>17,4</td>
<td>15,6</td>
<td>8,4</td>
</tr>
<tr>
<td>11,1</td>
<td>11,2</td>
<td>15,9</td>
<td>14,9</td>
<td>13,275</td>
<td>8,2</td>
</tr>
<tr>
<td>9,7</td>
<td>16,7</td>
<td>13,5</td>
<td>14,5</td>
<td>13,6</td>
<td>3,4</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>16,4</td>
<td>15,4</td>
<td>15,95</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>10,6</td>
<td>15,1</td>
<td>8,1</td>
<td>10,45</td>
<td>8</td>
</tr>
<tr>
<td>11,8</td>
<td>15</td>
<td>12,8</td>
<td>15</td>
<td>13,65</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>15,1</td>
<td>14,6</td>
<td>13,2</td>
<td>14,475</td>
<td>10</td>
</tr>
<tr>
<td>16,8</td>
<td>10,8</td>
<td>12</td>
<td>17,2</td>
<td>14,2</td>
<td>7</td>
</tr>
<tr>
<td>14,8</td>
<td>15,8</td>
<td>11,2</td>
<td>11,2</td>
<td>13,25</td>
<td>9</td>
</tr>
<tr>
<td>11,5</td>
<td>13,7</td>
<td>14</td>
<td>13,9</td>
<td>13,275</td>
<td>4,8</td>
</tr>
<tr>
<td>16</td>
<td>11,8</td>
<td>16</td>
<td>14</td>
<td>14,45</td>
<td>7,6</td>
</tr>
<tr>
<td>9,2</td>
<td>13,2</td>
<td>14,4</td>
<td>8,5</td>
<td>11,325</td>
<td>7,4</td>
</tr>
<tr>
<td>13</td>
<td>12,9</td>
<td>16,8</td>
<td>13,5</td>
<td>14,05</td>
<td>9,3</td>
</tr>
<tr>
<td>17</td>
<td>16,9</td>
<td>14,4</td>
<td>17,9</td>
<td>16,55</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ</th>
<th>ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>Μ.Ο. Χημείας Πανελληνίων 2019</th>
<th>Μ.Ο. Φυσικής Πανελληνίων 2019</th>
<th>Μ.Ο. Έκθεσης Πανελληνίων 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>1</td>
<td>2,2</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>1,5</td>
<td>7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>7,5</td>
<td>5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>10</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>8,2</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>7,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>8,5</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>8,5</td>
<td>5,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>8</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
</tbody>
</table>
Πίνακας 3β

<table>
<thead>
<tr>
<th>5</th>
<th>3,4</th>
<th>10,82</th>
<th>11,40</th>
<th>13,84</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>7</td>
<td>8,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>8,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>7</td>
<td>7,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9,5</td>
<td>9</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
</tbody>
</table>

Π.Ο. Μαθηματικών
Πανελλήνιων 2019

<table>
<thead>
<tr>
<th>ΜΟ. ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2019</th>
<th>ΣΥΝΟΛΙΚΑ ΜΟΡΙΑ</th>
<th>ΕΡΓΑΣΙΕΣ ΣΤΑ 20</th>
<th>ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ 20</th>
<th>ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ ΣΤΑ 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,05</td>
<td>15,975</td>
<td>18</td>
<td>18</td>
<td>16,5</td>
</tr>
<tr>
<td>10,05</td>
<td>14,411</td>
<td>0</td>
<td>11</td>
<td>12,2</td>
</tr>
<tr>
<td>10,05</td>
<td>13,242</td>
<td>15</td>
<td>11,5</td>
<td>17</td>
</tr>
<tr>
<td>10,05</td>
<td>14,120</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10,05</td>
<td>13,911</td>
<td>18,4</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>10,05</td>
<td>13,563</td>
<td>17,2</td>
<td>17,5</td>
<td>15</td>
</tr>
<tr>
<td>10,05</td>
<td>14,114</td>
<td>18,2</td>
<td>20</td>
<td>18,5</td>
</tr>
<tr>
<td>10,05</td>
<td>15,557</td>
<td>18,4</td>
<td>19</td>
<td>18,2</td>
</tr>
<tr>
<td>10,05</td>
<td>15,813</td>
<td>18,4</td>
<td>19</td>
<td>17,7</td>
</tr>
<tr>
<td>10,05</td>
<td>13,341</td>
<td>18,2</td>
<td>18,5</td>
<td>18,5</td>
</tr>
<tr>
<td>10,05</td>
<td>13,934</td>
<td>13,4</td>
<td>18,5</td>
<td>15,5</td>
</tr>
<tr>
<td>10,05</td>
<td>15,952</td>
<td>19</td>
<td>19</td>
<td>18,5</td>
</tr>
<tr>
<td>10,05</td>
<td>10,155</td>
<td>18</td>
<td>18</td>
<td>18,5</td>
</tr>
<tr>
<td>10,05</td>
<td>13,920</td>
<td>12</td>
<td>15</td>
<td>13,4</td>
</tr>
<tr>
<td>10,05</td>
<td>14,353</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>10,05</td>
<td>14,352</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>10,05</td>
<td>13,162</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>10,05</td>
<td>13,386</td>
<td>14,8</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>10,05</td>
<td>14,206</td>
<td>17,6</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>10,05</td>
<td>11,089</td>
<td>17,4</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>10,05</td>
<td>13,898</td>
<td>19,3</td>
<td>19,5</td>
</tr>
<tr>
<td></td>
<td>10,05</td>
<td>16,750</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

Πίνακας 4β

<table>
<thead>
<tr>
<th>ΧΗΜΕΙΑ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>-0,069</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΦΥΣΙΚΗ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>-0,117</td>
</tr>
<tr>
<td>ΕΚΘΕΣΗ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>0,097</td>
</tr>
<tr>
<td>ΜΑΘ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>-0,015</td>
</tr>
<tr>
<td>Μ.Ο. χημεία, φυσική, έκθεση, μαθηματικά/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>-0,057</td>
</tr>
<tr>
<td>ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>0,631</td>
</tr>
<tr>
<td>ΕΡΓΑΣΙΕΣ/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>0,828</td>
</tr>
<tr>
<td>Συνολικά Μόρια/ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</td>
<td>-0,058</td>
</tr>
</tbody>
</table>

Πίνακας 5β

Μ.Ο. Χημείας Παν./ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ	0,000
Μ.Ο. Φυσικής Παν./ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ	0,000
Μ.Ο. Έκθεσης Παν./ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ	0,000
Μ.Ο. Μαθηματικών Παν./ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ	0,000

Πίνακας 6β

Μ.Ο. Χημείας Παν./Εργασίες	0,000
Μ.Ο. Φυσικής Παν./Εργασίες	0,000
Μ.Ο. Έκθεσης Παν./Εργασίες	0,000
Μ.Ο. Μαθηματικών Παν./Εργασίες	0,000
Συνολικά μόρια/Εργασίες	0,050

Πίνακας 7β
Πίνακας 8β

ΧΗΜΕΙΑ/ΕΡΓΑΣΙΕΣ	0,156
ΦΥΣΙΚΗ/ΕΡΓΑΣΙΕΣ	0,035
ΕΚΘΕΣΗ/ΕΡΓΑΣΙΕΣ	0,165
ΜΑΘ/ΕΡΓΑΣΙΕΣ	0,026

Μ.Ο. χημεία, φυσική, έκθεση, μαθηματικά / ΕΡΓΑΣΙΕΣ 0,153

Πίνακας 9β

ΧΗΜΕΙΑ/Προσομοίωση	0,108
ΦΥΣΙΚΗ/Προσομοίωση	0,215
ΕΚΘΕΣΗ/Προσομοίωση	0,038
ΜΑΘ/Προσομοίωση	0,051

Μ.Ο. χημεία, φυσική, έκθεση, μαθηματικά / Προσομοίωση 0,167

Συνολικά μόρια / Προσομοίωση 0,159

Σε αυτή την περίπτωση εξακολουθούν οι ΕΡΓΑΣΙΕΣ και τα ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ να επηρεάζουν περισσότερο τον ΤΕΛΙΚΟ ΒΑΘΜΟ με τιμές σχεδόν ίδιες με της περίπτωσης 1. Η ΕΚΘΕΣΗ έχει σχεδόν μηδενική επιρροή και όλες τιμές των πινάκων 4β, 5β, 6β είναι μηδέν εξαιτίας της στρογγυλοποίησης στο τρίτο δεκαδικό. Οι υπόλοιπες τιμές του πίνακα 3β έχουν σχεδόν μηδενική ή πολύ μικρή αρνητική συσχέτιση. Ακόμη η ΦΥΣΙΚΗ εξακολουθεί να έχει την μεγαλύτερη αρνητική συσχέτιση.

Στους πίνακες 7β και 8β παρατηρούμε ότι οι τιμές δεν είναι κοντά ούτε στο -1 ούτε στο +1 οπότε δεν υπάρχει συσχέτιση.
Διαγράμματα

Διάγραμμα 1β

Βαθμός χημείας πανελληνίων - τελικός βαθμός/20

![Diagram 1β](image-url)

Αποτέλεσμα συνάρτησης correl: -0,069

Στο διάγραμμα υπάρχει η ίδια παρατήρηση με το αντίστοιχο του 1α δηλαδή ότι δεν υπάρχει συσχέτιση. Η μοναδική διαφορά του είναι ότι το δείγμα είναι μικρότερο και χωρίς κενά με αποτέλεσμα το διάγραμμα να δείχνει πιο ομοιόμορφο χωρίς τόσο μεγάλες αποκλίσεις μεταξύ χημείας και τελικού βαθμού.

Διάγραμμα 2β

56
Αποτέλεσμα συνάρτησης correl: -0,117

Σε αυτό το διάγραμμα παρατηρούμε ότι οι φοιτητές 1,2,5,11,14 έχουν παρόμοιο βαθμό φυσικής με τον τελικό βαθμό του μαθήματος. Ακόμη συγκριτικά με το διάγραμμα 2α η γραμμή τάσης έχει λιγότερο πτωτική τάση.

Διάγραμμα 3β
Αποτέλεσμα συνάρτησης correl: 0.097

Στο διάγραμμα 3β εξακολουθεί η έκθεση να έχει την μεγαλύτερη συσχέτιση από όλα τα υπόλοιπα μαθήματα.

Διάγραμμα 4β

Βαθμός μαθηματικών πανελληνίων - τελικός βαθμός/20
Αποτέλεσμα συνάρτησης correl: -0,015

Σε αυτό το διάγραμμα μαθηματικών και τελικού βαθμού υπάρχει καλύτερη ομοιομορφία, οι τιμές του ιστογράμματος βρίσκονται πιο κοντά στην γραμμή τάσης.

Διάγραμμα 5β

Μέσος όρος βαθμών χημείας, φυσικής, έκθεσης και μαθηματικών πανελληνίων - τελικό / 20

Αποτέλεσμα συνάρτησης correl: -0,057

Το διάγραμμα αυτό επιβεβαιώνει την τιμή της συνάρτησης correlκαθώς μόνο οι φοιτητές 1,2,14 έχουν τελικό βαθμό παρόμοιο με τον Μ.Ο. χημεία, φυσική, έκθεση, μαθηματικά.
Διάγραμμα 6β

Βαθμός εργασιών - τελικός βαθμός/20

![Diagram 6β](image)

Αποτέλεσμα συνάρτησης correl: -0,058

Διάγραμμα 7β
Βαθμός του τεστ προσομοίωσης - τελικός βαθμός/20

Αποτέλεσμα συνάρτησης correl: 0,631

Στο διάγραμμα 6β και 7β η μοναδική διαφορά που παρατηρείται είναι το μικρότερο δείγμα και η λιγότερο πτωτική τάση της γραμμής τάσης προς το τέλος του ιστογράμματος.

Διάγραμμα 8β

Μέσος όρος χημείας πανελληνίων έτους 2019 - τελικός βαθμός/20
Αποτέλεσμα συνάρτησης correl: 0

Διάγραμμα 9β

Μέσος όρος φυσικής πανελληνίων έτους 2019 - τελικός βαθμός/20

Διάγραμμα 10β

Μέσος όρος έκθεσης πανελληνίων έτους 2019 - τελικός βαθμός/20
Διάγραμμα 11β

Μέσος όρος μαθηματικών πανελληνίων έτους 2019 - τελικός βαθμός/20

Διάγραμμα 12β

Συνολικά μόρια πανελλαδικών εξετάσεων - τελικός βαθμός/20
Αποτέλεσμα συνάρτησης correl: 0

Στα διαγράμματα 8β,9β,10β,11β,12β δεν υπάρχει διαφορά από τα αντίστοιχα 8α,9α,10α,11α,12α. Εξακολουθεί να μην υπάρχει καμία συσχέτιση των δεδομένων παρότι δεν υπάρχει κάποιο κενό όπως στην περίπτωση α. Η μοναδική διαφορά σε όλες τις περιπτώσεις είναι η γραμμή τάσης δεν εμφανίζει τόσο πτωτική τάση στο τέλος της και στον φοιτητή 22 υπάρχει απότομη άνοδος της γραμμής αλλά όχι του ιστογράμματος.

Διάγραμμα 13β

Συνολικά μόρια πανελληνίων - τελικός βαθμός/20

Σε αυτό το διάγραμμα δεν παρατηρούμε σημαντικές αλλαγές μέχρι το σημείο εκείνο του δείγματος που βρίσκονται οι 2 νέοι φοιτητές. Από αυτό το σημείο του δείγματος και ύστερα παρατηρούμε ότι στον φοιτητή 23 (έχω θεωρήσει ότι είναι σχεδόν άριστος, δηλαδή έχει γράψει 18000 μόρια) τα συνολικά του μόρια έχουν πολύ μεγάλη συσχέτιση με τον τελικό βαθμό που έγραψε στο μάθημα CAD. Αντίθετα ο φοιτητής 24 (έχω θεωρήσει ότι πέρασε με χαμηλή βαθμολογία στην σχολή,8000 μόρια) έχει πολύ μικρή συσχέτιση καθώς ο απέχουν πολύ οι βαθμοί που προανέφερα. Και στις 2 περιπτώσεις ο τελικός βαθμός μαθήματος ήταν ο μέσος όρος βαθμολογιών (7,4).
5.4. γ) Περίπτωση- Πίνακες δεδομένων που έχουν συμπληρωθεί τα κενά με τον μέσο όρο της εκάστοτε στήλης και συσχετίσεις

Πίνακες Επεξεργασίας

Πίνακας 1γ

<table>
<thead>
<tr>
<th>ΧΗΜΕΙΑ</th>
<th>ΦΥΣΙΚΗ</th>
<th>ΕΚΘΕΣΗ</th>
<th>ΜΑΘΗΜΑΤΙΚΑ</th>
<th>Μ.Ο.χημεία, φυσική, εκθεση, μαθηματικά</th>
<th>ΕΡΓΑΣΙΕΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,5</td>
<td>17,5</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>13,8</td>
<td>13,5</td>
<td>14,5</td>
<td>14,45</td>
<td>0</td>
</tr>
<tr>
<td>8,7</td>
<td>13,3</td>
<td>15,3</td>
<td>14,7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>11</td>
<td>18</td>
<td>13,5</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>14,6</td>
<td>14,9</td>
<td>13,3</td>
<td>13,95</td>
<td>8,4</td>
</tr>
<tr>
<td>14</td>
<td>12,5</td>
<td>14,5</td>
<td>13,6</td>
<td>13,65</td>
<td>7,2</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>13,6</td>
<td>15,8</td>
<td>13,85</td>
<td>8,2</td>
</tr>
<tr>
<td>14,7</td>
<td>15,5</td>
<td>15,1</td>
<td>16,4</td>
<td>15,43</td>
<td>8,4</td>
</tr>
<tr>
<td>13,9</td>
<td>15,3</td>
<td>15,8</td>
<td>17,4</td>
<td>15,6</td>
<td>8,4</td>
</tr>
<tr>
<td>11,1</td>
<td>11,2</td>
<td>15,9</td>
<td>14,9</td>
<td>13,28</td>
<td>8,2</td>
</tr>
<tr>
<td>9,7</td>
<td>16,7</td>
<td>13,5</td>
<td>14,5</td>
<td>13,6</td>
<td>3,4</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>16,4</td>
<td>15,2</td>
<td>15,95</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>10,6</td>
<td>15,1</td>
<td>8,1</td>
<td>10,45</td>
<td>8</td>
</tr>
<tr>
<td>11,8</td>
<td>15</td>
<td>12,8</td>
<td>15</td>
<td>13,65</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>15,1</td>
<td>14,6</td>
<td>13,2</td>
<td>14,475</td>
<td>10</td>
</tr>
<tr>
<td>16,8</td>
<td>10,8</td>
<td>12</td>
<td>17,2</td>
<td>14,2</td>
<td>7</td>
</tr>
<tr>
<td>15,4</td>
<td>12,8</td>
<td>14,8</td>
<td>14,19</td>
<td>14,30</td>
<td>9,6</td>
</tr>
<tr>
<td>14,8</td>
<td>15,8</td>
<td>11,2</td>
<td>11,2</td>
<td>13,25</td>
<td>9</td>
</tr>
<tr>
<td>11,5</td>
<td>13,7</td>
<td>14</td>
<td>13,9</td>
<td>13,28</td>
<td>4,8</td>
</tr>
<tr>
<td>16</td>
<td>11,8</td>
<td>16</td>
<td>14</td>
<td>14,45</td>
<td>7,6</td>
</tr>
<tr>
<td>13,24</td>
<td>12,5</td>
<td>13,5</td>
<td>14</td>
<td>13,31</td>
<td>8</td>
</tr>
<tr>
<td>9,2</td>
<td>13,2</td>
<td>14,4</td>
<td>8,5</td>
<td>11,33</td>
<td>7,4</td>
</tr>
<tr>
<td>13</td>
<td>12,9</td>
<td>16,8</td>
<td>13,5</td>
<td>14,05</td>
<td>9,3</td>
</tr>
<tr>
<td>17</td>
<td>16,9</td>
<td>14,4</td>
<td>17,9</td>
<td>16,55</td>
<td>9</td>
</tr>
<tr>
<td>10,6</td>
<td>14,02</td>
<td>13,9</td>
<td>10,6</td>
<td>12,28</td>
<td>4,2</td>
</tr>
</tbody>
</table>
Πίνακας 2γ

<table>
<thead>
<tr>
<th>ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>Μ.Ο. Χημείας Πανελληνίων 2019</th>
<th>Μ.Ο. Φυσικής Πανελληνίων 2019</th>
<th>Μ.Ο. Έκθεσης Πανελληνίων 2019</th>
<th>Μ.Ο. Μαθηματικών Πανελληνίων 2019</th>
<th>ΣΥΝΟΛΙΚΑ ΜΟΡΙΑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>15.975</td>
</tr>
<tr>
<td>2,2</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.411</td>
</tr>
<tr>
<td>7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>13.242</td>
</tr>
<tr>
<td>10</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.120</td>
</tr>
<tr>
<td>5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>13.911</td>
</tr>
<tr>
<td>5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>13.563</td>
</tr>
<tr>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.114</td>
</tr>
<tr>
<td>8,2</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>15.557</td>
</tr>
<tr>
<td>7,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>15.813</td>
</tr>
<tr>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>13.341</td>
</tr>
<tr>
<td>5,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>13.934</td>
</tr>
<tr>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>15.952</td>
</tr>
<tr>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>10.155</td>
</tr>
<tr>
<td>3,4</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>13.920</td>
</tr>
<tr>
<td>10</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.353</td>
</tr>
<tr>
<td>8,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.352</td>
</tr>
<tr>
<td>9,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.055</td>
</tr>
<tr>
<td>8,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>13.162</td>
</tr>
<tr>
<td>7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>13.386</td>
</tr>
<tr>
<td>7,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.206</td>
</tr>
<tr>
<td>6</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.055</td>
</tr>
<tr>
<td>9</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>11.089</td>
</tr>
<tr>
<td>6</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.055</td>
</tr>
<tr>
<td>9</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>13.898</td>
</tr>
<tr>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>16.750</td>
</tr>
<tr>
<td>6</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.055</td>
</tr>
<tr>
<td>3,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
<td>10,05</td>
<td>14.055</td>
</tr>
</tbody>
</table>
Πίνακας 3γ

<table>
<thead>
<tr>
<th>ΤΕΣΤ ΠΡΟΣΟΜΟΙΩΣΗΣ</th>
<th>ΤΕΛΙΚΟΣ ΒΑΘΜΟΣ</th>
<th>Μ.Ο. Χημείας Πανελληνίων 2019</th>
<th>Μ.Ο. Φυσικής Πανελληνίων 2019</th>
<th>Μ.Ο. Έκθεσης Πανελληνίων 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>1</td>
<td>2,2</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>1,5</td>
<td>7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>7,5</td>
<td>5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>10</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>8,2</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>7,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>8,5</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>8,5</td>
<td>5,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>8</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>5</td>
<td>3,4</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>7</td>
<td>8,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>10</td>
<td>9,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>8,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>7</td>
<td>7,7</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9,5</td>
<td>9</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>9</td>
<td>8,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
<tr>
<td>7,7</td>
<td>3,5</td>
<td>10,82</td>
<td>11,40</td>
<td>13,84</td>
</tr>
</tbody>
</table>
Πίνακας 4γ

<table>
<thead>
<tr>
<th>Χημεία/Τελικός Βαθμός</th>
<th>0,037</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φυσική/Τελικός Βαθμός</td>
<td>-0,105</td>
</tr>
<tr>
<td>Εκθεση/Τελικός Βαθμός</td>
<td>0,131</td>
</tr>
<tr>
<td>Μαθ/Τελικός Βαθμός</td>
<td>0,097</td>
</tr>
<tr>
<td>Μ.Ο. χημεία, φυσική, έκθεση, μαθηματικά/Τελικός Βαθμός</td>
<td>0</td>
</tr>
<tr>
<td>Προσ/Τελικός Βαθμός</td>
<td>0,597</td>
</tr>
<tr>
<td>Έργας/Τελικός Βαθμός</td>
<td>0,827</td>
</tr>
<tr>
<td>Συνολικά μόρια/Τελικός Βαθμός</td>
<td>-0,052</td>
</tr>
</tbody>
</table>

Πίνακας 5γ

<table>
<thead>
<tr>
<th>Μ.Ο. Χημείας Παν./Τελικός Βαθμός</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μ.Ο. Φυσικής Παν./Τελικός Βαθμός</td>
<td>#ΔΙΑΙΡ/0!</td>
</tr>
<tr>
<td>Μ.Ο. Έκθεσης Παν./Τελικός Βαθμός</td>
<td>0</td>
</tr>
<tr>
<td>Μ.Ο. Μαθηματικών Παν./Τελικός Βαθμός</td>
<td>0</td>
</tr>
</tbody>
</table>

Πίνακας 6γ

<table>
<thead>
<tr>
<th>Μ.Ο. Χημείας Παν./Εργασίες</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μ.Ο. Φυσικής Παν./Εργασίες</td>
<td>#ΔΙΑΙΡ/0!</td>
</tr>
<tr>
<td>Μ.Ο. Έκθεσης Παν./Εργασίες</td>
<td>0</td>
</tr>
<tr>
<td>Μ.Ο. Μαθηματικών Παν./Εργασίες</td>
<td>0</td>
</tr>
<tr>
<td>Συνολικά μόρια/Εργασίες</td>
<td>0,049</td>
</tr>
</tbody>
</table>

Πίνακας 7γ

<table>
<thead>
<tr>
<th>Μ.Ο. Χημείας Παν./Προσομοίωση</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μ.Ο. Φυσικής Παν./Προσομοίωση</td>
<td>#ΔΙΑΙΡ/0!</td>
</tr>
<tr>
<td>Μ.Ο. Έκθεσης Παν./Προσομοίωση</td>
<td>0</td>
</tr>
<tr>
<td>Μ.Ο. Μαθηματικών Παν./Προσομοίωση</td>
<td>0</td>
</tr>
</tbody>
</table>

Πίνακας 8γ
<table>
<thead>
<tr>
<th>ΧΗΜΕΙΑ/ΕΡΓΑΣΙΕΣ</th>
<th>0,208</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΦΥΣΙΚΗ/ΕΡΓΑΣΙΕΣ</td>
<td>-0,003</td>
</tr>
<tr>
<td>ΕΚΘΕΣΗ/ΕΡΓΑΣΙΕΣ</td>
<td>0,172</td>
</tr>
<tr>
<td>ΜΑΘ/ΕΡΓΑΣΙΕΣ</td>
<td>0,088</td>
</tr>
<tr>
<td>Μ.Ο. χημεία,φυσική, έκθεση,μαθηματικά/ΕΡΓΑΣΙΕΣ</td>
<td>0,195</td>
</tr>
</tbody>
</table>

Πίνακας 9γ

<table>
<thead>
<tr>
<th>ΧΗΜΕΙΑ/Προσομοίωση</th>
<th>0,016</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΦΥΣΙΚΗ/Προσομοίωση</td>
<td>0,170</td>
</tr>
<tr>
<td>ΕΚΘΕΣΗ/Προσομοίωση</td>
<td>-0,009</td>
</tr>
<tr>
<td>ΜΑΘ/Προσομοίωση</td>
<td>0,024</td>
</tr>
<tr>
<td>Μ.Ο. χημεία,φυσική, έκθεση,μαθηματικά/Προσομοίωση</td>
<td>0,134</td>
</tr>
<tr>
<td>Συνολικά μόρια/Προσομοίωση</td>
<td>0,155</td>
</tr>
</tbody>
</table>

Διαγράμματα

Διάγραμμα 1γ
Αποτέλεσμα συνάρτησης correl: 0,040

Σε αυτό το διάγραμμα παρατηρούμε ότι η γραμμή τάσης ακολουθεί παρόμοια πορεία με το διάγραμμα 1α και όχι 1β. Πιο συγκεκριμένα μετά από τους φοιτητές 24 και 25 έχει έντονη πτωτική τάση (όπως 1α) αλλά στον φοιτητή 22 δεν κάνει τόσο απότομη αλλαγή στο ύψος διότι δεν υπάρχουν μηδενικά δεδομένα όπως στην 1α. Το συμπέρασμα παρόλα αυτά είναι το ίδιο, ο βαθμός της Χημείας δεν έχει καμία συσχέτιση με τον τελικό βαθμό.

Διάγραμμα 2γ
Αποτέλεσμα συνάρτησης correl: -0,106

Στο παραπάνω διάγραμμα παρατηρούμε ότι οι φοιτητές 1,2,5,11,14,24,25 έχουν παραπλήσιο βαθμό φυσικής και τελικό βαθμό. Παράτι το οι φοιτητές που προανέφερα αποτελούν ένα σημαντικό κομμάτι του δείγματος, οι υπόλοιπες τιμές απέχουν πολύ του ιστογράμματος απέχουν πολύ. Γι αυτό το λόγο κιόλας η συνάρτηση correl δεν δείχνει καμία συσχέτιση.

Διάγραμμα 3γ
Βαθμός έκθεσης πανελληνίων - τελικός βαθμός/20

Αποτέλεσμα έκθεσης corret: 0,129

Το διάγραμμα 3γ μας αποδεικνύει για ακόμη μία φορά ότι η έκθεση είναι το μάθημα με την μεγαλύτερη συσχέτιση.

Διάγραμμα 4γ

Βαθμός μαθηματικών πανελληνίων - τελικός βαθμός/20
Αποτέλεσμα συνάρτησης correl: 0,098

Στο παραπάνω διάγραμμα μαθηματικών και τελικού βαθμού μόνο 3 φοιτητές έχουν κοντινούς βαθμούς οπότε συμπεραίνουμε ότι δεν υπάρχει συσχέτιση.

Παραμοίως και για το 5γ, ο Μ.Ο,χημεία,φυσική,έκθεση,μαθηματικά δεν σχετίζεται με τον τελικό βαθμό.

Διάγραμμα 5γ

Μέσος όρος βαθμών χημείας, φυσικής, έκθεσης και μαθηματικών πανελληνίων - τελικός βαθμός/20

Αποτέλεσμα συνάρτησης correl: 0

Στα παρακάτω διαγράμματα 6γ και 7γ υπάρχει πολύ μεγάλη συσχέτιση με τον τελικό βαθμό όπως και στα διαγράμματα 6α,7α,6β,7βκαι έχουν ομοιότητα πιο πολύ κυρίως με την περίπτωση α. Το γεγονός ότι το δείγμα είναι ελαφρός μικρότερο δεν δείχνει να επηρεάζει ιδιαίτερα το αποτέλεσμα της συνάρτησης καθώς διαφορές εντοπίζονται μόνο στο δεύτερο και τρίτο δεκαδικό.

Διάγραμμα 6γ
Βαθμός εργασιών - τελικός βαθμός/20

Αποτέλεσμα συνάρτησης correl: 0,825

Διάγραμμα 7γ

Βαθμός τεστ προσομοίωσης - τελικός βαθμός/20

Αποτέλεσμα συνάρτησης correl: 0,590
Από τα διαγράμματα 8γ,9γ,10γ,11γ,12γ μπορούμε να καταλάβουμε ότι ο Μ.Ο. Χημείας Πανελληνίων 2019, Μ.Ο. Φυσικής Πανελληνίων 2019, Μ.Ο. Έκθεσης Πανελληνίων 2019, Μ.Ο. Μαθηματικών Πανελληνίων και τα Συνολικά Μόρια εξακολουθούν να μην έχουν καμιά συσχέτιση με τον τελικό βαθμό του μαθήματος CAD.

Διάγραμμα 8γ

Μέσος όρος χημείας πανελληνίων έτους 2019 - τελικός βαθμός/20

![Diagram 8g](image)

Αποτέλεσμα συνάρτησης correl: 0

Διάγραμμα 9γ

Μέσος όρος φυσικής πανελληνίων έτους 2019 - τελικός βαθμός/20

![Diagram 9g](image)
Αποτέλεσμα συνάρτησης correp: 0

Διάγραμμα 10γ

Μέσος όρος έκθεσης πανελλήνιων έτους 2019 -τελικός βαθμός/ 20

Αποτέλεσμα συνάρτησης correp: 0
Διάγραμμα 11γ

Μέσος όρος μαθηματικών πανελληνίων έτους 2019 -τελικός βαθμός/20

Διάγραμμα 12γ

Συνολικά μόρια πανελλαδικών εξετάσεων - τελικός βαθμός/20
Αποτέλεσμα συνάρτησης correl: -0,052

6. Συμπεράσματα

Σκοπός της παρούσας διπλωματικής εργασίας είναι η θεμελίωση ασφαλούς συμπεράσματος σχετικά με τους παράγοντες που καθορίζουν την επιτυχημένη ή μη απόδοση των φοιτητών κατά την διάρκεια των προπτυχιακών σπουδών τους. Για την πλήρη παρουσίαση του θέματος μελέτη βιβλιογραφικών πηγών, συλλογή δεδομένων και επεξεργασία αυτών και ορθή οργάνωση.

Στο πρώτο μέρος, το οποίο είναι κατά βάση θεωρητικό, εξετάστηκαν οικονομικοί παράγοντες, ο τρόπος διεξαγωγής των μαθημάτων με ιδιαίτερη έμφαση στην εξ αποστάσεως εκπαίδευση, η οποία άλλοτε επιβάλλεται εξαιτίας έκτακτων δυσμενών περιστάσεων όπως ο κορωνοϊός και άλλοτε αποτελεί συνειδητή επιλογή τρόπου διδασκαλίας, καθώς επίσης και οι καταλήψεις ως περίοδος αναστολής μαθημάτων.

Στο δεύτερο μέρος, χρησιμοποιήθηκε μία σειρά πειραμάτων με διαφορετικά δεδομένα, τα οποία συλλέχθηκαν κατά την διαζώσης εκπαίδευση, στο πρώτο εξάμηνο λειτουργίας της σχολής, ως πλέον πενταετές εκπαιδευτικό ιδρύμα. Εξετάστηκε μια λογική μεθοδολογία για την εκπόνηση ασφαλών συμπερασμάτων, με χρήση του λογισμικού excel. Κάνοντας χρήση βασικών συναρτήσεων, έγινε προσπάθεια τεκμηρίωσης με στατιστικά δεδομένα λογικών συμπερασμάτων τα οποία προέκυψαν από συνέντευξη με την καθηγήτρια κυρία Ζωή Κανετάκη, και την εικοσαετή εμπειρία της στη διδασκαλία του αντικειμένου.

Με δεδομένη την πρόσφατη εισαγωγή των φοιτητών στο τμήμα, καθώς και το νεαρό της ηλικίας τους, επιλέχθηκαν ως πρώτη σειρά παραγόντων οι βαθμοί εισαγωγής των πανελληνίων εξετάσεων. Ως δεύτερη σειρά οι επιδόσεις τους μέσα στο πρώτο τετράμηνο εκπαίδευσής τους, καθώς και η ανταπόκρισή τους στις ασκήσεις που τους ανατέθηκαν. Τέλος, ως Τρίτη σειρά παραγόντων εξετάστηκε παράλληλα και η απόδοσή τους στο προγνωστικό τεστ (προσομοίωσης).

Δεν λάβαμε υπόψιν στην παρούσα έρευνα το φύλο των φοιτητών, καθότι η συντριπτική πλειοψηφία των φοιτητών του τμήματος είναι αγόρια, και δεν θα εμφάνιζε κάποιο ενδιαφέρον ο διαχωρισμός τους.
Αναφορικά με την επίδοση των φοιτητών στις πανελλήνιες εξετάσεις, παρατηρήθηκε ότι η βαθμολογία στην έκθεση έπαιξε το πιο καθοριστικό ρόλο σε σχέση με τα άλλα μαθήματα των ίδιων εξετάσεων στην πρόοδο των φοιτητών, παρόλο που το αντικείμενο σπουδών τους ήταν η Μηχανολογία. Το συμπέρασμα αυτό ενισχύεται τόσο από την συνάρτηση Correl όσο και από τα σχετικά διαγράμματα.

Παρότι η λογική ερμηνεία θα έδειχνε ότι η υψηλή απόδοση σε μαθήματα θετικού περιεχομένου συμπεραίνει και υψηλότερο βαθμό στο αντικείμενο μελέτης (μηχανολογικό σχέδιο), συσχετίζοντας τα στατιστικά δεδομένα, προκύπτει ότι τα μαθήματα φυσικής, χημείας και μαθηματικών δεν επηρεάζουν την μελλοντική επίδοση των φοιτητών.

Όσον αφορά τους παράγοντες εργασίες και τεστ προσομοίωσης, επαληθεύεται η λογική ερμηνεία ότι ο φοιτητής που είναι συνεπής στην παράδοση εργασιών θα έχει καλή απόδοση στο τελικό τεστ.

Παρατηρήθηκε ότι το προγνωστικό τεστ και οι εργασίες έχουν την μεγαλύτερη συσχέτιση με τον τελικό βαθμό του μαθήματος καθώς η τιμή της συνάρτησης correl είναι πολύ κοντά στο 1.

Ακόμα στο διάγραμμα 13β (Συνολικά μόρια πανελληνίων - τελικός βαθμός/20) παρατηρείται μία αντίφαση. Παρόλο που στο διάγραμμα 12β (Συνολικά μόρια πανελλαδικών εξετάσεων - τελικός βαθμός/20) και 13β φαίνεται τα συνολικά μόρια να μην επηρεάζουν καθόλου τον τελικό βαθμό στο διάγραμμα 13β στην περίπτωση του φοιτητή που εισήλθε με 18.000 μόρια φαίνεται από το διάγραμμα να υπάρχει μεγάλη συσχέτιση. Παρόλα αυτά δεν μπορούμε να καταλήξουμε στο συμπέρασμα ότι οι φοιτητές που εισέρχονται με πιο υψηλά μόρια στην σχολή γράφουν μεγάλο βαθμό στο μάθημα CAD.
7. ΒΙΒΛΙΟΓΡΑΦΙΑ

7.1 Ελληνική Βιβλιογραφία

- Αβραάμ Ευαγγελία, Εξ Αποστάσεως Εκπαίδευση Διάδραση ανθρώπου τεχνολογίας, διπλωματική εργασία, Πανεπιστήμιο Μακεδονίας Διαστημικό πρόγραμμα μεταπτυχιακών σπουδών στα πληροφοριακά συστήματα, Θεσσαλονίκη 2002
- Αντώνης Λοιφάρακης, Ανοικτή και εξ Αποστάσεως Πολυμορφική Εκπαίδευση: Προβληματισμοί για μία ποιοτική προσέγγιση σχεδιασμού διδακτικού υλικού, Αντώνης Χριστοφίδης, Πώς θα πούμε όχι στις «καταλήψεις», 4 Νοεμβρίου 2007
- Γιώργος Νικολόπουλος, Χρήστος Πιερρακέας, Αχιλλέας Καμέας, Μαθησιακά Αντικείμενα: Χαρακτηρίζοντας τις Αυτόνομες Μονάδες Ψηφιακού Εκπαιδευτικού υλικού στην Εξ Αποστάσεως Εκπαίδευση
- Γιώργος Μαυρογιώργος, Από το συμβατικό σύστημα εκπαίδευσης στην ανοικτή και εξ Αποστάσεως εκπαίδευση του ΕΑΠ: μια πρόκληση
- Ελένη Βαβύλα, Εφαρμογή Μαρκοβιανών Μοντέλων Στην Ανάλυση της Ακαδημαϊκής Επίδοσης Φοιτητών, μεταπτυχιακή-διπλωματική εργασία, Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Φλώρινας Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, Φλώρινα Μάρτιος 2018
- Θάνος Παπαϊωάννου, "Οι καταλήψεις ως ακύρωση δημοκρατίας", Καθημερινή, 24/11/2019
- Ιδρυμα Οικονομικών και Βιομηχανικών Ερευνών (ΙΟΒΕ), Εκπαιδευτικές ανισότητες στην Ελλάδα: Πρόσβαση στην τριτοβάθμια εκπαίδευση και επιπτώσεις της κρίσης.

"Κοροναϊός - ΗΠΑ: Τα μεγάλα πανεπιστήμια στρέφονται στην εξ' αποστάσεως εκπαίδευση", Έθνος, 10 Μαρτίου 2020
- "Κορονοϊός: Πανεπιστήμια προωθούν διδακτικό υλικό από απόσταση", Έθνος, 17 Μαρτίου 2020
- Κρητικού, Σ., &Κουτσούμπα, Μ. (2011). Ανοικτή και εξ Αποστάσεως τριτοβάθμια Εκπαίδευση και Άτομα με Αναπηρία. Η Περίπτωση του Ελληνικού Ανοικτού
Πανεπιστημίου. Ανοικτή Εκπαίδευση: το περιοδικό για την Ανοικτή και εξ
Αποστάσεως Εκπαίδευση και την Εκπαιδευτική Τεχνολογία

• Λιγνός Κωνσταντίνος, Ανοικτή και εξ αποστάσεως εκπαίδευση: Σχεδιασμός και
υλοποίηση μαθήματος για την τριτοβάθμια εκπαίδευση, πτυχιακή εργασία,
Πανεπιστήμιο Αιγαίου Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας

• Μελίστα Α., Χιλλ Μ., «Διδασκαλία γλωσσικών δεξιοτήτων , το κείμενο: από το
έντυπο υλικό της εξ αποστάσεως εκπαίδευσης στην οθόνη του υπολογιστή», στα
πρακτικά του Πανελλήνιου Συνεδρίου με διεθνή συμμετοχή «Νέες Τεχνολογίες
στην Εκπαίδευση και στην Εκπαίδευση από Απόσταση», Παιδαγωγικό τμήμα
Δημοτικής Εκπαίδευσης Πανεπιστημίου Κρήτης, Ρέθυμνο 8-10 Ιουνίου 2001

• Μίμινου, &Σπανακά (2013). Σχολική εξ αποστάσεως εκπαίδευση: Καταγραφή και
συζήτηση μίας βιβλιογραφικής επισκόπησης. Διεθνές Συνέδριο για την Ανοικτή &
ex Αποστάσεως Εκπαίδευση

• Νίκος Παναγιωτόπουλος, Οι «Λιμνάζοντες Φοιτητές» και το Ζήτημα της
Πρόσβασης Στην Ανώτατη Εκπαίδευση, Ερευνητικό πρόγραμμα «Πρόσβαση στην
Ανώτατη Εκπαίδευση. Μελέτη των κοινωνικών, εκπαιδευτικών και θεσμικών
dιαστάσεων της ζήτησης τριτοβάθμιας εκπαίδευσης, των προβλημάτων και των
πολιτικών ικανοποίησης της – μία Συγκριτική και εμπειρική προσέγγιση», Αθήνα
2015

• Παπαγεωργίου Κωνσταντίνος, Κατάδειξη και αξιολόγηση των παραγόντων που
επηρεάζουν την ακαδημαϊκή πορεία των φοιτητών του Τμήματος Διαχείρισης
Πληροφοριών του ΤΕΙ Καβάλας, Πτυχιακή εργασία, ΤΕΙ ΑΜΘ, Σχολή Διοίκησης και
Οικονομίας Τμήμα Διαχείρισης Πληροφοριών, Μάρτιος 2014

• "Πανεπιστήμια: Πώς θα γίνουν οι εξετάσεις - Τι ισχύει με πρακτική άσκηση και
erγαστήρια", 21 Μαΐου 2020

• Παπαματθαίου Μάρνυ, "Πανεπιστήμιο Αθηνών: Οι πληγές και οι επιπτώσεις από
την κατάληψη", Το βήμα, 18 Απριλίου 2015

• Στάθης Καλύβας, «Που είμαστε και πού πάμε», Νοέμβριος 2016

• Σοφία θ. Παπαδημητρίου, Αντώνης Λιοναράκης, Ο ρόλος του Καθηγητή-
Συμβούλου και η ανάπτυξη μηχανισμού υποστήριξης του στην Εξ Αποστάσεως
Εκπαίδευση
7.2 Ξένη Βιβλιογραφία

- Fung, Y., Carr, R., (2000), Face-to-Face Tutorials in a Distance Learning System: Meeting student needs, Open Learning
- Irfan Mushtaq & Shabana Nawaz Khan, June 2012, Factors Affecting Students’ Academic Performance, Global Journal of Management and Business Research
https://www.stockwatch.com.cy/el/article/eyropaiki-oikonomia/symvoylio-
enekrine-symperasmata-gia-tin-antimetopisi-tis-krisis-covid-19