ΔΙΔΥΡΥΜΑΤΙΚΟ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
«ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΜΕΤΑΦΟΡΕΣ»

ΤΙΤΛΟΣ
ΠΡΑΣΙΝΗ ΝΑΥΤΙΛΙΑ ΕΝ ΠΛΩ: Αποδοχή, Διάχυση & Υιοθέτηση του ΥΦΑ & του Ηλεκτρισμού ως εναλλακτικά καύσιμα στην Ελλάδα

ΤΙΤΛΟΣ ΑΓΓΛΙΚΑ
GREEN SHIPPING ON BOARD: Acceptance, Diffusion & Adoption of LNG & Electricity as alternative fuels in Greece

Ονοματεπώνυμο Σπουδαστή:
Ολγα Σιδέρη

Ονοματεπώνυμο Υπεύθυνου Καθηγητή:
Νικήτας Νικητάκος-Δημήτρης Παπαχρήστος

ΔΙΑΤΡΙΒΗ
Φεβρουάριος 2020
ΠΡΑΣΙΝΗ ΝΑΥΤΙΛΙΑ ΕΝ ΠΛΩ: Αποδογή, Διάγυση & Υιοθέτηση του ΥΦΑ & του Ηλεκτρισμού ως εναλλακτικά καύσιμα στην Ελλάδα

ΤΙΤΛΟΣ

ΟΝΟΜΑ ΦΟΙΤΗΤΗ

Μεταπτυχιακή Διατριβή που υποβάλλεται στο καθηγητικό σώμα για την μερική εκπλήρωση των υποχρεώσεων απόκτησης του μεταπτυχιακού τίτλου του Διδακτικού Προγράμματος Μεταπτυχιακών Σπουδών «Νέες Τεχνολογίες στη Ναυτιλία και τις Μεταφορές» του Τμήματος Ναυτιλίας και Επιχειρηματικών Υπηρεσιών του Πανεπιστημίου Αιγαίου και του Τμήματος Μηχανικών Βιομηχανικής Σχεδίασης και Παραγωγής του Πανεπιστημίου Δυτικής Αττικής.
Δήλωση συγγραφέα διπλωματικής διατριβής

Ο/Η κάτωθι υπογεγραμμένος / η Σιδερή Όλγα, του Ιωάννη, με αριθμό μητρώου ...88... φοιτητής / τρια του Διδρυματικού Προγράμματος Μεταπτυχιακών Σπουδών «Νέες Τεχνολογίες στη Ναυτιλία και τις Μεταφορές» του Τμήματος Ναυτιλίας και Επιχειρηματικών Υπηρεσιών του Πανεπιστημίου Αιγαίου και του Τμήματος Μηχανικών Βιομηχανικής Σχεδίασης και Παραγωγής του Πανεπιστημίου Δυτικής Αττικής, δηλώνει ότι: «Είμαι συγγραφέας αυτής της μεταπτυχιακής διπλωματικής διατριβής και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην διατριβή. Επίσης έχω αναφέρει τις όποιες πηγές πηγείς από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε αυτές αναφέρονται ακριβώς είτε παραφρασμένες. Επίσης βεβαιώνω ότι αυτή η διατριβή προετοιμάστηκε από εμένα προσωπικά ειδικά για τη συγκεκριμένη μεταπτυχιακή διπλωματική διατριβή».

Η δηλών/ούσα Σιδερή Όλγα
Ημερομηνία 07-02-2020
ΚΕΦΑΛΑΙΟ 1º: ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΑΝΑΣΚΟΠΗΣΗ .. 15
1.1 Ερευνητικό ερώτημα και Σημαντικότητα ... 15
1.2 Σκοπός και Στόχοι της Έρευνας .. 17
1.3 Περιορισμοί .. 19
1.4 Θεωρητικό Πλαίσιο-Μοντέλα και Θεωρίες Αποδοχής της Τεχνολογίας 20
1.4.1 Μοντέλο Αποδοχής Τεχνολογίας (TAM) 24
1.4.2 Θεωρία διάχυσης της καινοτομίας (IDT) 27
1.4.3 Ενσωμάτωση του Μοντέλου Αποδοχής της Τεχνολογίας και της Θεωρίας Διάχυσης της Καινοτομίας (TAM & IDT) 34
1.5 Διάρθρωση της Εργασίας .. 36

ΚΕΦΑΛΑΙΟ 2º: ΕΝΑΛΛΑΚΤΙΚΑ ΚΑΥΣΙΜΑ .. 38
2.1 Εναλλακτικά καύσιμα στην Ναυτιλία ... 38
2.2 Ευρωπαϊκά Συγχρηματοδοτούμενα προγράμματα για το LNG και την ηλεκτρική ενέργεια στην Ελλάδα ... 40
2.2.1 Το LNG (Υγροποιημένο φυσικό αέριο) ως εναλλακτικό καύσιμο 42
2.2.2 Η Ηλεκτρική Ενέργεια ως εναλλακτικό καύσιμο 47

ΚΕΦΑΛΑΙΟ 3º ΕΡΕΥΝΗΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ .. 49
3.1. Μεθοδολογία Έρευνας ... 49
3.2 Σχεδιασμός Έρευνας .. 50
3.3. Ανάπτυξη Ερωτηματολογίου-Συλλογή Δεδομένων 52
3.4 Δειγματοληψία ... 54
3.5 Ερευνητικό μοντέλο ... 55
3.6 Ερευνητικές υποθέσεις ... 56

ΚΕΦΑΛΑΙΟ 4º ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΑ 65
4.1. Εισαγωγή .. 65
4.2 Ανάλυση Δημογραφικών Στοιχείων ... 65
4.3 Αποτελέσματα και Συζήτηση ... 69
4.4 Αξιοπιστία .. 72
4.5 Καινοτομικότητα .. - 114 -

ΚΕΦΑΛΑΙΟ 5ο: ΣΥΜΠΕΡΑΣΜΑΤΑ .. - 117 -
5.1 Εμπειρικά Συμπεράσματα .. - 117 -
5.2 Μελλοντική Έρευνα .. - 122 -
5.3 Συνεισφορά .. - 122 -

Βιβλιογραφία .. - 124 -
Παραρτήματα .. - 131 -
Πίνακες

Πίνακας 1.1: Εξέλιξη θεωριών και μοντέλων σχετικά με την Αποδοχή της Τεχνολογίας ...20
Πίνακας 1.2: Οι ορισμοί όλων των κατασκευών των δύο θεωριών ..23
Πίνακας 4.1: Δημογραφικά στοιχεία των ερωτηθέντων ...65
Πίνακας 4.2: Το Φύλο των συμμετεχόντων ..66
Πίνακας 4.3: Η ηλικία των συμμετεχόντων ...67
Πίνακας 4.4: Το επίπεδο εκπαίδευσης των ενδιαφερόμενων ..67
Πίνακας 4.5: Ο Ναυτιλιακός τομέας στον οποίο απασχολούνται οι συμμετέχοντες68
Πίνακας 4.6: Περιγραφικά Στατιστικά ..69
Πίνακας 4.7: Οι συσχετισμοί μεταξύ των μεταβλητών ...70
Πίνακας 4.8: Οι συσχετίσεις της Παρατηρητικότητας με την PU ...73 -
Πίνακας 4.9: Τα εναλλακτικά καύσιμα παρατηρείται ότι θα φέρουν συρρεύση την ηλεκτροδότηση της PU74 -
Πίνακας 4.10: Οι συσχετίσεις της Πολυπλοκότητας με την PU ...75 -
Πίνακας 4.11: Τα εναλλακτικά καύσιμα διαθέτουν ένα σύνθετο σύστημα ανεφοδιασμού καυσίμων ..76 -
Πίνακας 4.12: Τα διαφορετικά εξαρτήματα τις ηλεκτροδότησης της PU ...77 -
Πίνακας 4.13: Οι συσχετίσεις των Παρατηρητικότητας με την Ανθρώπινη Ασφάλεια του LNG ..78 -
Πίνακας 4.14: Οι ανησυχίες σχετικά με την Ανθρώπινη Ασφάλεια του LNG ..78 -
Πίνακας 4.15: Οι συσχετίσεις των μεταβλητών με την PU ..79 -
Πίνακας 4.16: Οι συσχετίσεις της Παρατηρητικότητας με την Ανθρώπινη Ασφάλεια του LNG ..79 -
Πίνακας 4.17: Οι συσχετίσεις της Παρατηρητικότητας με την Ανθρώπινη Ασφάλεια του LNG ..79 -
Πίνακας 4.18: Οι συσχετίσεις της Παρατηρητικότητας με την Ανθρώπινη Ασφάλεια του LNG ..79 -
Πίνακας 4.19: Οι συσχετίσεις της Παρατηρητικότητας με την Ανθρώπινη Ασφάλεια του LNG ..79 -
Πίνακας 4.20: Οι συσχετίσεις της Παρατηρητικότητας με την Ανθρώπινη Ασφάλεια του LNG ..79 -
Πίνακας 4.21: Οι συσχετίσεις της διαθεσιμότητας με την PU .. - 86 -
Πίνακας 4.22: Οι stakeholders πιστεύουν ότι υπάρχει διαθεσιμότητα των συγκεκριμένων εναλλακτικών καυσίμων ... - 87 -
Πίνακας 4.23: Το πρόβλημα της “κότας και του αυγού” προκαλεί ανησυχία σχετικά με την διαθεσιμότητα.. - 88 -
Πίνακας 4.24: Οι συσχετίσεις των Υποδομών με την PU .. - 89 -
Πίνακας 4.25: Η έλλειψη υποδομών δημιουργεί προβλήματα στην αλυσίδα εφοδιασμού εναλλακτικών καυσίμων .. - 90 -
Πίνακας 4.26: Υπάρχει αβεβαιότητα για το αν ο χρήστης θα μπορεί να ανεφοδιάξει εύκολα τα πλοία του .. - 90 -
Πίνακας 4.27: Οι συμμετέχοντες θεωρούν επιτακτική την τυποποίηση για εγκαταστάσεις ανεφοδιασμού LNG ... - 91 -
Πίνακας 4.29: Η υποδομή για cold ironing στα λιμάνια είναι σοφή κίνηση - 92 -
Πίνακας 4.30: Οι συσχετίσεις των οικονομικών και χρηματοοικονομικών ανησυχιών με την PU ... - 94 -
Πίνακας 4.31: Υπάρχει έλλειψη γνώσης για το αν η χρήση εναλλακτικών καυσίμων μπορεί να προκαλέσει οικονομικές ζημίες στους stakeholders......................... - 94 -
Πίνακας 4.32: Για το κόστος κεφαλαίου για υποδομές και πλοία τροφοδοτούμενα με τα εναλλακτικά καύσιμα απαιτείται τεράστια επένδυση - 95 -
Πίνακας 4.33: Οι συσχετίσεις της συμβατότητας με την PU και την PEU - 96 -
Πίνακας 4.34: Υπάρχει αβεβαιότητα σχετικά με τη χρήση αυτών των δύο εναλλακτικών καυσίμων και της συμβατότητας με τις ναυτιλιακές δραστηριότητες των εμπλεκόμενων φορέων .. - 97 -
Πίνακας 4.35: Το LNG και η ηλεκτρική ενέργεια διαπιστώνεται ότι είναι δια λειτουργικά με άλλα συστήματα των υφιστάμενων πλοίων. - 98 -
Πίνακας 4.36: Οι συσχετίσεις του σχετικού πλεονεκτήματος με την PEU - 99 -
Πίνακας 4.37: Τα εναλλακτικά καύσιμα υποστηρίζονται ότι είναι αξιόπιστα - 100 -
Πίνακας 4.38: Οι συσχετίσεις της δοκιμασίας με την PEU - 101 -
Πίνακας 4.39: Υπάρχει δυνατότητα επικοινωνίας των αποτελεσμάτων των δύο εναλλακτικών καυσίμων .. - 102 -
Πίνακας 4.40: Η χρήση των εναλλακτικών καυσίμων φέρνει διχασμό στην δυνατότητα εγκατάλειψης τους .. - 103 -
Πίνακας 4.41: Οι συσχετίσεις της κυβερνητικής πολιτικής με την PEU - 104 -
Πίνακας 4.42: Οι πολιτικές πρέπει να ενθαρρύνουν την βελτίωση της αποδοτικότητας των δύο τεχνολογιών .. - 106 -
Πίνακας 4.43: Οι συσχετίσεις των κανονισμών λιμένων με την PEU - 106 -
Πίνακας 4.44: Οι συμμετέχοντες δίνουν μεγάλη βαρύτητα στο ρόλο των Λιμένων... - 107 -
Πίνακας 4.45: Οι Λιμενικές Υπηρεσίες πρέπει να είναι ευέλικτες με τις διεθνείς κατευθυνήμενες οραματικές των εναλλακτικών καυσίμων... - 108 -
Πίνακας 4.46: Παρατηρείται ισχυρή σχέση μεταξύ των δύο παραγόντων ελέγχου, PU και PEU ... - 109 -
Πίνακας 4.46: Παρατηρείται ισχυρή σχέση μεταξύ των δύο παραγόντων ελέγχου, PU και PEU ... - 109 -
Πίνακας 4.47: Η συντριπτική πλειοψηφία θεωρεί χρήσιμη τη μετάβαση στα εναλλακτικά καύσιμα ... -111-
Πίνακας 4.48: Οι συμμετέχοντες βρίσκουν χρήσιμη την υιοθέτηση του LNG και της ηλεκτρικής ενέργειας... -112-
Πίνακας 4.49: Αποτελέσματα Ερευνητικών Υποθέσεων .. -112-
Πίνακας 4.50: Cronbach’s Alpha ... -114-
Πίνακας 4.51: Η συντριπτική πλειοψηφία αναμένεται να χρησιμοποιήσουν τα συγκεκριμένα εναλλακτικά καύσιμα στο μέλλον ... -116 -
Εικόνες

Εικόνα 1.1: το μοντέλο TAM...26
Εικόνα 1.2: Τα 5 στοιχεία που είναι κρίσιμα για την Διάχυση της Καινοτομίας30
Εικόνα 1.3: Το εννοιολογικό πρότυπο διάχυσης της καινοτομίας ..31
Εικόνα 1.4: Οι κατηγορίες των υιοθετούντων σύμφωνα με τη θεωρία του Rogers........33
Εικόνα 1.5: Η διάρθρωση της διπλωματικής εργασίας..37
Εικόνα 1.2.1: Το πρόγραμμα Poseidon Med II ...41
Εικόνα 1.2.2: το πρόγραμμα Elemed...42
Εικόνα 1.2.3: To LNG μειώνει τους ρύπους κατά 21%..42
Εικόνα 1.2.4: To LNG μειώνει τις επιβλαβείς εκπομπές αερίων.............................43
Εικόνα 1.2.5: Τα πλοία που τροφοδοτούνται με LNG παγκοσμίως..........................43
Εικόνα 1.2.6: Εναλλακτικές λύσεις ανεφοδιασμού του ναυτιλιακού καυσίμου LNG......44
Εικόνα 1.2.5: Οι εγκαταστάσεις τροφοδοσίας του καυσίμου LNG............................45
Εικόνα 1.2.7: Η Νορβηγία κατέχει τις περισσότερες εγκαταστάσεις ανεφοδιασμού45
Εικόνα 1.2.8: Οι κινητήρες που χρησιμοποιούνται στην χρήση του LNG..................46
Εικόνα 1.2.9: Οι κινητήρες που χρησιμοποιούνται στην χρήση του LNG...............46
Εικόνα 3.1: Ο ρόλος των λιμενικών αρχών στην ανάπτυξη του ανεφοδιασμού καυσίμων LNG..62

Σχήματα

Σχήμα 1.1: Τα 5 χαρακτηριστικά της καινοτομίας σύμφωνα με τον Rogers28
Σχήμα 3.1 Προτεινόμενο μοντέλο έρευνας ...56
Περίληψη

Σήμερα, η χρήση εναλλακτικών καυσίμων θεωρείται βασικός τομέας βιώσιμης τεχνολογικής ανάπτυξης στις θαλάσσιες μεταφορές. Υπάρχει συνεχής διαδικασία στον IMO, στον Διεθνή Ναυτιλιακό Οργανισμό των Ηνωμένων Εθνών και σε άλλους διεθνείς οργανισμούς για την τροποποίηση και τη βελτίωση των κανονισμών που ισχύουν για τον ναυτιλιακό κλάδο. Η Ελλάδα είναι έτοιμη να εισέλθει στην εποχή του υγροποιημένου φυσικού αερίου (LNG) και της ηλεκτρικής ενέργειας ως καύσιμα πλοίων, καθώς τα έργα (projects) της Ανατολικής Μεσογείου λαμβάνουν μέτρα για την υιοθέτηση αυτών των εναλλακτικών μορφών καυσίμου. Σκοπός αυτής της μελέτης είναι να διερευνήσει την πρόθεση αποδοχής και χρήσης των εμπλεκόμενων φορέων (stakeholders) στην Ελλάδα, να χρησιμοποιήσουν το LNG και την ηλεκτρική ενέργεια ως εναλλακτικά καύσιμα. Στόχος αυτής της μελέτης είναι να εντοπίσει, να προσδιορίσει και να αξιολογήσει τους παράγοντες που επηρεάζουν και οδηγούν στην αποδοχή και χρήση του υγροποιημένου φυσικού αερίου (LNG) και της ηλεκτρικής ενέργειας ως εναλλακτικά καύσιμα. Με αυτό τον τρόπο θα κατανοηθούν πιθανά εμπόδια ή αβεβαιότητες στην ενσωμάτωση της τεχνολογίας από τους stakeholders προκειμένου να συμβάλλει στην πιο ποιοτική κατανόηση του “πράσινου” δικτύου της ναυτιλίας. Επίσης, θα αναδείξει το ρόλο που παίζουν οι βασικοί παίκτες στη διαδικασία διάχυσης της τεχνολογίας καινοτομίας και τη συνδυασμό με την Θεωρία Διάχυσης της Καινοτομίας (IDT) για να διερευνήσει την πρόθεση υιοθέτησης αυτών των εναλλακτικών καυσίμων και να ενημερώσει τους φορείς χάραξης πολιτικής σε ένα επιθυμητό μονοπάτι, αυτό της βιώσιμης ναυτιλίας.

Λέξεις-Κλειδιά: Υγροποιημένο Φυσικό Αέριο (LNG), Ηλεκτρική Ενέργεια, Ναυτιλία, Μοντέλο Αποδοχής της Τεχνολογίας (TAM), Θεωρία Διάχυσης της Καινοτομίας, Λήψη αποφάσεων πολλαπλών κριτηρίων
Abstract

Today, the use of alternative fuels is considered to be a key area of sustainable technological growth in maritime transport. The IMO, the International Maritime Organization of the United Nations and other international organizations are in the process of amending and strengthening the laws applicable to the shipping industry. Greece is ready to enter the era of Liquefied Natural Gas and Electricity as marine fuels, as Eastern Mediterranean projects are taking steps towards the adoption of these alternative fuels. The goal of this study is to explore the intention to accept and use LNG and electricity as alternative fuels by Greek stakeholders. The objective of this study is to detect, identify and evaluate factors that influence and lead to the acceptance and use of liquefied natural gas (LNG) and electricity as alternative fuels. This will explain possible challenges or obstacles in the adoption of technology by stakeholders to lead to a better understanding of the green shipping network. It will also highlight the role played by key players in the diffusion process of technological innovation, but at the same time the technology itself and its characteristics. In addition, this research will propose a simplified model using the Expansive Technology Acceptance Model (TAM) in conjunction with the Innovation Diffusion Theory (IDT) to investigate the purpose of adopting these alternative fuels and to educate policy makers about the optimal direction of sustainable shipping.

Keywords: Liquefied Natural gas (LNG), Electricity, Shipping, Technology Acceptance Model (TAM), Innovation Diffusion Theory (IDT), Multi-criteria decision making
Εισαγωγή

Τα τελευταία χρόνια, παρατηρείται μια συνεχώς αυξανόμενη τάση στον κλάδο της ναυτιλίας προς την υιοθέτηση καινοτόμων τεχνολογικών λύσεων σε κάθε πτυχή των ναυτιλιακών δραστηριοτήτων. Στο πλαίσιο αυτό εντάσσεται και η συγκεκριμένη έρευνα, η οποία επιχειρεί να προβλέψει την πρόθεση αποδοχής και χρήσης του υγροποιημένου φυσικού αερίου (LNG) και της ηλεκτρικής ενέργειας και κατά δεύτερον να εντοπίσει και να αξιολογήσει τους παράγοντες που επιδρούν στην απόφαση για την υιοθέτηση τους στην ελληνική ναυτιλιακή βιομηχανία.

Οι νέες τεχνολογίες προσφέρουν τεράστιες ευκαιρίες δραστικής βελτίωσης του περιβαλλοντικού προβλήματος και οι πολιτικές ατζέντες για την βιώσιμη ανάπτυξη είναι καθοριστικές προς την κατεύθυνση των εναλλακτικών μορφών καυσίμων. Πράγματι, τα τελευταία χρόνια παρατηρείται από την πλευρά της ναυτιλίας η χάραξη στρατηγικών για την υιοθέτηση εναλλακτικών καυσίμων και η ανάληψη πρωτοβουλιών εναρμονισμένων με αυτές τις κατευθύνσεις που μετουσιώνονται σταδιακά στην υιοθέτηση καινοτομιών.

Το ενδιαφέρον από την πλευρά των εμπλεκόμενων φορέων στην ναυτιλία για τις νέες τεχνολογίες είναι διαρκώς αυξανόμενο και σε συνδυασμό με τους όλο και πιο αυστηρούς κανονισμούς και ελέγχους από τον Διεθνή Ναυτιλιακό Οργανισμό, καθίσταται επιτακτική ανάγκη η υιοθέτηση τεχνολογιών, φιλικών προς το περιβάλλον.

Το LNG και η ηλεκτρική ενέργεια ως εναλλακτικά καύσιμα θα αξιολογηθούν εμπειρικά για τη διερεύνηση των δυνατοτήτων τους ως προς τη χρήση τους ως ναυτιλιακά καύσιμα στην Ελλάδα. Ο στόχος αυτός, της μείωσης των εκπομπών από τα πλοία προσλαμβάνει ακόμη μεγαλύτερη αξία καθώς λαμβάνεται υπόψη η περιβαλλοντική διάσταση στο συγκεκριμένο θέμα έρευνας. Στο πλαίσιο αυτό, το LNG και η ηλεκτρική ενέργεια παρουσιάζονται σαν εναλλακτικές λύσεις για να αντιμετωπιστεί το κοινωνικό πρόβλημα της κλιματικής αλλαγής και διαφαίνονται ως οι βέλτιστες λύσεις στην ανάγκη για μετάβαση σε πιο «πράσινες» τεχνολογίες.

Η έρευνα αυτή διερευνά και αξιολογεί την πρόθεση αποδοχής και χρήσης LNG και ηλεκτρισμού ως εναλλακτικών καυσίμων στην Ελλάδα για θαλάσσια πρόωση. Και οι δύο τεχνολογίες είναι ήδη σύμφωνες με τους αυστηρούς κανονισμούς για τις εκπομπές πλοίων.
Πιο συγκεκριμένα, η μελέτη επιχειρεί να σχεδιάσει ένα θεωρητικό μοντέλο έτσι ώστε να εντοπίσει, να ερευνήσει και να αξιολογήσει τους κύριους παράγοντες που επηρεάζουν και οδηγούν στην υιοθέτηση και χρήση αυτών των εναλλακτικών καυσίμων.

Το πλαίσιο για τη διερεύνηση των καθοριστικών παραγόντων θα επιτευχθεί με ένα υβριδικό μοντέλο που βασίζεται στο μοντέλο τεχνολογικής αποδοχής (TAM) και στη θεωρία διάχυσης της καινοτομίας (IDT) και σε πρόσθετες ανεξάρτητες μεταβλητές που χαρακτηρίζουν το LNG και την ηλεκτρική ενέργεια. Οι μεταβλητές αυτές περιλαμβάνουν κοινωνικούς, οικονομικούς, περιβαλλοντικούς και πολιτικούς παράγοντες. Η ποσοτική έρευνα θα διεξαχθεί με τη συλλογή δεδομένων από τους ενδιαφερόμενους φορείς της ελληνικής ναυτιλιακής βιομηχανίας με τη διεξαγωγή μιας ανάλυσης αποφάσεων πολλαπλών κριτηρίων.

Οι γνώσεις που δημιουργούνται από την παρούσα ερευνητική προσπάθεια συμβάλλουν στον περιβαλλοντικό και κοινωνικό αντίκτυπο, καθώς και στην πολιτική επιρροή και την μετάβαση προς την αειφόρο ναυτιλία. Προσπαθεί να εξεταστεί εμπειρικά η σχέση συγκεκριμένων μεταβλητών για την υιοθέτηση εναλλακτικών καυσίμων στην Ελλάδα και αξιζεί να επισημανθεί ότι δεν υπάρχει έγγραφο που να έχει βρεθεί στην ανασκόπηση σχετικά με την αποδοχή αυτών των εναλλακτικών καυσίμων καθώς και καμία μελέτη με αυτά τα μοντέλα μαζί που να εξετάζουν θαλάσσιες τεχνολογίες. Είναι αξιοσημείωτο ότι το προτεινόμενο ερευνητικό μοντέλο μπορεί να αποτελέσει τη βάση για την ανάπτυξη μελλοντικών ερευνητικών προτάσεων.

Η έρευνα αυτή είναι η πρώτη εμπειριστική προσπάθεια συμβάλλει στον περιβαλλοντικό και κοινωνικό αντίκτυπο, καθώς και στην πολιτική επιρροή και την μετάβαση προς την αειφόρο ναυτιλία. Προσπαθεί να εξεταστεί εμπειρικά η σχέση συγκεκριμένων μεταβλητών για την υιοθέτηση εναλλακτικών καυσίμων στην Ελλάδα και αξιζεί να επισημανθεί ότι δεν υπάρχει έγγραφο που να έχει βρεθεί στην ανασκόπηση σχετικά με την αποδοχή αυτών των εναλλακτικών καυσίμων καθώς και καμία μελέτη με αυτά τα μοντέλα μαζί που να εξετάζουν θαλάσσιες τεχνολογίες. Είναι αξιοσημείωτο ότι το προτεινόμενο ερευνητικό μοντέλο μπορεί να αποτελέσει τη βάση για την ανάπτυξη μελλοντικών ερευνητικών προτάσεων.
κατευθύνσεις σχετικά με τρόπους ενίσχυσης της διαδικασίας παρακολούθησης και επικοινωνίας, καθώς και να τους βοηθήσει να εδραιώσουν τη νομιμότητα της χρήσης ΥΦΑ και ηλεκτρισμού ως καυσίμων πλοίων στην Ελλάδα και γενικότερα στην Ανατολική Μεσόγειο. Το πλαίσιο αυτό στοχεύει στην ενημέρωση της διαδικασίας λήψης αποφάσεων σε μια επιθυμητή κατεύθυνση που είναι η αειφόρος ναυτιλία.
ΚΕΦΑΛΑΙΟ 1ο: ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΑΝΑΣΚΟΠΗΣΗ

1.1 Ερευνητικό ερώτημα και Σημαντικότητα

Σήμερα, ίσως περισσότερο από ποτέ, η αλλαγή του κλίματος λαμβάνει μεγάλες διαστάσεις και είναι ένα παγκόσμιο πρόβλημα του πλανήτη που απαιτεί ιδιαίτερη προσοχή και μια δυναμική πολιτική. Η αντιμετώπιση της κλιματικής αλλαγής, είναι μία από τις κύριες προτεραιότητες για τις κυβερνήσεις σε όλο τον κόσμο. Οι έννοιες της αειφορίας και της βιώσιμης ανάπτυξης έχουν καύρια σημασία για την εξέλιξη του τομέα της περιβαλλοντικής πολιτικής της τελευταίας δεκαετίας (Meadowcroft, J. et al, 2012).

Υπό τις συνθήκες αυτές, οι κυβερνήσεις, οι πολιτικές ατζέντες αρθρώνονται γύρω από προγράμματα και λαμβάνουν μέτρα για την επίτευξη μιας κοινωνίας χαμηλών εκπομπών άνθρακα. Επίσης, όλο και περισσότερο, έννοιες και πολλοί οργανισμοί (IPCC, UNFCCC, WMO κλπ.) αποκτούν διαπραγματευτική δύναμη σε διεθνείς συζητήσεις για την προώθηση της ακτιβιστικής ανάπτυξης και την εξασφάλιση της βιώσιμης ανάπτυξης.

Στο πλαίσιο αυτό, η αλλαγή του κλιματικού δεν είναι μόνο περιβαλλοντικό πρόβλημα, αλλά έχει πολιτικά χαρακτηριστικά, επειδή η αποτελεσματική στρατηγική για το κλίμα απαιτεί παγκόσμια συνεργασία και παγκόσμιες λύσεις. Η βιωσιμότητα κερδίζει έδαφος στη ναυτιλιακή βιομηχανία, η οποία αλλάζει ώστε να πληρούνται οι νέοι κανονισμοί από τον Διεθνή Ναυτιλιακό οργανισμό (ΙΜΟ). Τα ανακύπτοντα ζητήματα αποτελούν προκλητικά πρότυπα και υπάρχει ανάγκη μεγαλύτερης συνειδητοποίησης των μακροπρόθεσμων δυνάμεων που διαμορφώνουν τη βιομηχανία.

Ο σχεδιασμός της πολιτικής για τις θαλάσσιες μεταφορές θα πρέπει να περιλαμβάνει τεχνολογικές λύσεις που θα διασφαλίζουν τόσο οικονομική αποδοτικότητα όσο και περιβαλλοντική προστασία με στόχο την εξάλειψη της ρύπανσης από τα πλοία. Οι ριζικές αλλαγές στο λειτουργικό περιβάλλον του πλοίου θα δημιουργήσουν προκλήσεις και αβεβαιότητες για πολλούς φορείς αλλά και ευκαιρίες για εκείνες τις εταιρίες που είναι προετοιμασμένες να στραφούν στην βέλτιστη τεχνολογία. Αυτό καθιστά ακόμη πιο σημαντικό να ζητήσουμε διεθνείς κανονιστικές και τεχνολογικές προκλήσεις για να καταστεί η ναυτιλία πραγματικά βιώσιμη.

Η διεθνής ναυτιλία είναι υπεύθυνη για τη μεταφορά περίπου 90% του παγκόσμιου εμπορίου και παρουσιάζει μια σημαντική συνολική ανάπτυξη. Η μετάβαση στην βιώσιμη ανάπτυξη της ναυτιλίας αποτελεί ένα από τα σημαντικότερα ζητήματα προς διευθέτηση και
η ναυτιλία, ως συντελεστής του διεθνούς εμπορίου, χρήζει άμεσης αντιμετώπισης σε παγκόσμια κλίμακα. Η αξιοποίηση μιας προηγμένης τεχνολογίας μέσω της τεχνολογικής αλλαγής σε βελτιωμένες τεχνολογίες φιλικές προς το περιβάλλον θεωρείται η βέλτιστη λύση μέσα από τις πολιτικές ατζέντες.

Στο πλαίσιο της προσπάθειας της ναυτιλίας να συμβάλει στην επίτευξη των στόχων της βιώσιμης ανάπτυξης, βάση των αυστηρότερων κανονισμών, απαιτούνται καινοτόμες τεχνολογίες και στρατηγικές για τον σχηματισμό μιας βιώσιμης ναυτιλίας. Για το λόγο αυτό, πολλές μελέτες επικεντρώνονται στις τεχνολογίες μείωσης των εκπομπών που νομοθετικά με συγκεκριμένο τρόπο την έννοια της αειφορίας. Τα εναλλακτικά καύσιμα είναι μία από τις τεχνολογίες μείωσης των εκπομπών και έρχονται σαν λύση για την ομαλή μετάβαση στη διευρυμένη χρήση του «πράσινου καυσίμου».

Η ναυτιλιακή βιομηχανία αρχίζει να μετατρέπει το στόλο της σε εναλλακτικά καύσιμα κυρίως στην Βαλτική θάλασσα και, ανάλογα με αυτό, βελτιώνονται οι εγκαταστάσεις ανεφοδιασμού, οι κινητήρες καθώς και οι κανόνες και οι κατευθυντήριες οδηγίες. Πώς η Ελλάδα μπορεί να προσαρμοστεί με τους διεθνείς κανονισμούς; Γι’ αυτό το σκοπό, δημιουργούνται νέα projects με σκοπό την καθιέρωση του LNG και της ηλεκτρικής ενέργειας ως κύρια πώληση των πλοίων. Στην Ελλάδα, η χρήση εναλλακτικών μορφών ενέργειας ως καύσιμου στη ναυτιλία είναι τα τελευταία χρόνια το πιο μεγάλο στοίχημα για την συγκεκριμένη βιομηχανία.

Σε αυτό το σημείο έγκειται και η σημαντικότητα της συγκεκριμένης μελέτης. Το ερευνητικό ερώτημα που προσπαθεί να απαντήσει η συγκεκριμένη έρευνα είναι “σε ποιο βαθμό είναι έτοιμοι να αποδεχθούν τις δύο συγκεκριμένες τεχνολογίες οι stakeholders στην ελληνική ναυτιλιακή βιομηχανία”; Σκοπός αυτής της μελέτης είναι να ερευνήσει και να αξιολογήσει την συμπεριφορική πρόθεση αποδοχής και χρήσης του LNG και της ηλεκτρικής ενέργειας.

Επίσης, το δεύτερο πολύ σημαντικό ερευνητικό ερώτημα είναι: “Ποιοι είναι οι καθοριστικοί παράγοντες που συμβάλλουν σε αυτή την υιοθέτηση;” Η συγκεκριμένη μελέτη παρέχει το εννοιολογικό πλαίσιο για να κατανοηθεί η δυναμική ανάμεσα στις αλληλεπιδράσεις μεταξύ των διαφορετικών πακτών και τις πολιτικές ατζέντες που διαμορφώνονται σχετικά με το δίκτυο του υγροποιημένου φυσικού αερίου και της ηλεκτρικής ενέργειας μέσα από τους όρους της διαπραγμάτευσης.
Επιπρόσθετα, μέσα από την κατανόηση των μεταβλητών του ερευνητικού μοντέλου, θα αναδειχθούν διαφορετικοί παράγοντες που επηρεάζουν την ανάπτυξη της βιωσιμότητας στη ναυτιλία, από τους ρυθμιστικούς έως τους κοινωνικοοικονομικούς παράγοντες, τις πτυχές που σχετίζονται με την αγορά και τους ανθρώπινους παράγοντες, οι οποίοι μαζί συνεισφέρουν με διάφορους τρόπους στην ανάπτυξη τεχνολογικών καινοτομιών.

Είναι η πρώτη φορά που θα εξεταστούν εμπειρικά οι συγκεκριμένες τεχνολογίες και δεν έχει διαπιστωθεί παρόμοια μελέτη ούτε στη διεθνή βιβλιογραφία. Επίσης, είναι η πρώτη φορά που θα χρησιμοποιηθούν οι δύο θεωρίες/μοντέλα αποδοχής της τεχνολογίας (TAM & IDT) σε τεχνολογίες εναλλακτικών καυσίμων με τη μορφή ενός ενοποιημένου μοντέλου συμπεριλαμβάνοντας και εξωτερικές μεταβλητές. Οπότε, εύλογα προκύπτει το ερώτημα “Είναι το ενοποιημένο υβριδικό μοντέλο αξιόπιστο εργαλείο μέτρησης?”

Τέλος, για να μπορέσει να απαντηθεί το ερώτημα του κατά πόσον οι stakeholders στην Ελλάδα είναι θετικοί απέναντι στα εναλλακτικά κάσιμα του LNG και της ηλεκτρικής ενέργειας χρειάζεται η κατανόηση της καινοτομίας μέσα από τους παράγοντες που την εντοπίζουν και δοκιμάστηκαν με τη μορφή υποθέσεων. Δεδομένου ότι πολλοί διαφορετικοί ενδιαφερόμενοι εμπλέκονται στη διαδικασία της καινοτομίας, προκύπτει ότι ένας από τους κρίσιμους παράγοντες στη στήριξη της βιώσιμης ναυτιλίας είναι η κατανόηση όλων των ανησυχιών, των αναγκών και των προσδοκιών από τους stakeholders (stakeholders).

Για την κατανόηση της καινοτομίας – καθοδηγούμενη από διαδικασίες μετασχηματισμού είναι απαραίτητο να κατανοήσουμε την ετερογένεια των υποκείμενων στις διαδικασίες καινοτομίας, τους παράγοντες που τους επηρεάζουν και τον τρόπο που αλληλεπιδρούν μεταξύ τους (Praetorius et al., 2009). Το πλαίσιο αυτό στοχεύει στην ενημέρωση της διαδικασίας λήψης αποφάσεων σε μια επιθυμητή κατεύθυνση που είναι η αειφόρος ναυτιλία.

1.2 Σκοπός και Στόχοι της Έρευνας

Ο σκοπός αυτής της μελέτης είναι να διερευνήσει την πρόθεση αποδοχής και χρήσης των δυνητικών χρηστών (stakeholders) στην ναυτιλία στην Ελλάδα να χρησιμοποιήσουν το υγροποιημένο φυσικό αέριο (LNG) και την ηλεκτρική ενέργεια ως εναλλακτικές μορφές καυσίμου, στο πλαίσιο της βιώσιμης ανάπτυξης. Ο σκοπός αυτός θα επιτευχθεί, βλέποντας
την υιοθέτηση μιας τεχνολογίας σαν μια διαδικασία που περιλαμβάνει διαφορετικά στάδια, διαφορετικούς εμπλεκόμενους φορείς, διαφορετικές ανησυχίες, αβεβαιότητες και παράγοντες σε κάθε στάδιο.

Ο σκοπός αυτής της μελέτης οδηγεί στην ανάπτυξη των ακόλουθων ειδικών ερευνητικών στόχων.

- Πρωταρχικός στόχος της συγκεκριμένης μελέτης είναι να προσδιορίσει, να αναλύσει και να αξιολογήσει τους καθοριστικούς παράγοντες που επηρεάζουν την πρόθεση αποδοχής, διάχυσης και χρήσης των εναλλακτικών καυσίμων, του LNG και της ηλεκτρικής ενέργειας για θαλάσσια πρόωση.
- Για να επιτευχθεί αυτό, ένας ακόμη στόχος αυτής της μελέτης είναι η ανάπτυξη και ο σχεδιασμός ενός αξιόπιστου μοντέλου αποδοχής της τεχνολογίας που θα έχει τη δύναμη να αποδεικνύει τη συμπεριφορική πρόθεση αποδοχής του LNG και της ηλεκτρικής ενέργειας ως καύσιμα πρόωσης στην ναυτιλία στην Ελλάδα. Ετσι, η συγκεκριμένη μελέτη αναθεωρεί τη βιβλιογραφία σχετικά με δύο εξέχουσες θεωρίες και μοντέλα αποδοχής της τεχνολογίας, του Μοντέλου Αποδοχής της Τεχνολογίας (TAM) και της Θεωρίας Διάχυσης της Τεχνολογίας (IDT) συμπεριλαμβανομένων ανεξάρτητων μεταβλητών γύρω από τις δύο τεχνολογίες.
- Η διεξοδική και σε βάθος κατανόηση των μεταβλητών του μοντέλου μπορεί να βοηθήσει τους φορείς χάραξης πολιτικής στην Ελλάδα να αναλύσουν τους λόγους προτίμησης ή τους λόγους αντίστασης στις συγκεκριμένες τεχνολογίες και θα τους βοηθήσει να λάβουν αποτελεσματικά μέτρα. Η χρήση του ερευνητικού μοντέλου θα βοηθήσει εργαλειακά να κατανοηθούν πιθανά εμπόδια, αβεβαιότητες και ανεξάρτητες μεταβλητές στην ενσωμάτωση των δύο τεχνολογιών από τους stakeholders προκειμένου να συμβάλλει στην ποιοτική κατανόηση της μετάβασης στην αειφόρο ανάπτυξη στην ναυτιλία.
- Να διερευνήσει το βαθμό στον οποίο οι stakeholders της ναυτιλιακής βιομηχανίας στην Ελλάδα αποδέχονται και πρόκειται να υιοθετήσουν και να χρησιμοποιήσουν τα δύο συγκεκριμένα εναλλακτικά καύσιμα.
- Να δημιουργήσει, να κατασκευάσει και να επικυρώσει ένα υβριδικό μοντέλο που θα μπορεί να χρησιμοποιηθεί για μελλοντικές έρευνες.
- Επιπρόσθετα, καθώς γίνεται προσπάθεια πρώτη φορά στην συγκεκριμένη έρευνα να εξεταστεί εμπειρικά η σχέση συγκεκριμένων μεταβλητών για την υιοθέτηση
εναλλακτικών καυσίμων της ναυτιλίας ανταποκρινόμενοι στις ανάγκες και στο πλαίσιο της Ελλάδας στην συγκεκριμένη έρευνα στόχος είναι η συγκεκριμένη μελέτη να ενημερώσει τη διαδικασία χάραξης πολιτικής στην Ελλάδα σε μια επιθυμητή κατεύθυνση/μονοπάτι (pathway) προς μια βιώσιμη ναυτιλία και τα συμπεράσματα να μπορούν να χρησιμοποιηθούν για μελλοντική εφαρμογή.

1.3 Περιορισμοί

Οι περιορισμοί αυτής της εμπειρικής έρευνας προέρχονται από το γεγονός ότι καθώς οι συγκεκριμένες τεχνολογίες βρίσκονται σε πρώιμη φάση ανάπτυξης στην Ελλάδα, δεν μπορεί κανείς να μετρήσει άμεσα συμπεριφορές των καταναλωτών. Ωστόσο, είναι δυνατόν να μετρηθεί η συμπεριφορική πρόθεση των δυνητικών χρηστών που θα υιοθετήσουν τα συγκεκριμένα εναλλακτικά καύσιμα ώστε να επιπλέξει η πρόβλεψη της πραγματικής χρήσης.

Για τον λόγο που αναφέρθηκε παραπάνω, ότι οι συγκεκριμένες τεχνολογίες βρίσκονται σε πρώιμο στάδιο ανάπτυξης, το δείγμα είναι λίγο περιοριστικό καθώς δεν υπήρχε μεγάλη ανταπόκριση από ναυτιλιακούς φορείς πολύ πιθανό γιατί δεν υπάρχει ακόμα μεγάλη διάχυση της γνώσης γύρω από τα εναλλακτικά καύσιμα. Αυτό πιθανό να επιβεβαιώνεται και από το δείγμα όπου το 90% περίπου των συμμετεχόντων προέρχονται από νηογνώμονες, ναυτιλιακές εταιρίες ή είναι εργαζομένοι της μετάβασης σε πιο καθαρά καύσιμα και υπάρχει γνώση, ενδιαφέρον αλλά και ανησυχία.

Επιπρόσθετα, παρατηρείται πως δεν υπάρχει αντίστοιχη μελέτη που να εντοπίστηκε στη διεθνή βιβλιογραφία, επομένως τα αποτελέσματα της έρευνας δεν μπορούν να συγκριθούν με προηγούμενες μελέτες. Επίσης, για το λόγο αυτό το υβριδικό μοντέλο που προτείνει η εν λόγω μελέτη κατασκευάστηκε από την αρχή και δεν βασίστηκε σε κάποια προηγούμενη μελέτη.

Παρόμοια με το παραπάνω, δεν υπάρχει βιβλιογραφία που να αναφέρεται στο τοπικό πλαίσιο της Ελλάδας, οπότε όλες οι μελέτες γύρω από τις δύο τεχνολογίες προέρχονται από επιστημονικές μελέτες κυρίως από χώρες που χρησιμοποιούν τα συγκεκριμένα καύσιμα του LNG και της ηλεκτρικής ενέργειας και οι μεταβλητές ενσωματώθηκαν στο τοπικό πλαίσιο που εξετάζουμε.
1.4 Θεωρητικό Πλαίσιο-Μοντέλα και Θεωρίες Αποδοχής της Τεχνολογίας

Πολλές θεωρίες και μοντέλα έχουν αναπτυχθεί κατά τη διάρκεια των ετών για να εντοπίσουν τους παράγοντες που παίζουν καθοριστικό ρόλο στην αποδοχή του χρήστη και στην υιοθέτηση νέων τεχνολογιών, όπως διατυπώνονται οι σημαντικότερες στον Πίνακα 1.1.

Πίνακας 1.1: Εξέλιξη θεωριών και μοντέλων σχετικά με την Αποδοχή της Τεχνολογίας

<table>
<thead>
<tr>
<th>Έτος</th>
<th>Θεωρία/Μοντέλο</th>
<th>Ιδρυτής</th>
<th>Κατασκευές / Προσδιοριστικοί παράγοντες</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Θεωρία Διάχυσης της Καινοτομίας (Diffusion of Innovation Theory)</td>
<td>Everett Roger</td>
<td>Η καινοτομία, τα κανάλια επικοινωνίας, ο χρόνος και το κοινωνικό σύστημα. Το Σχετικό πλεονέκτημα, η Συμβατότητα, η Πολυπλοκότητα, η δοκιμασία και η Παρατηρητικότητα (τα χαρακτηριστικά για την Καινοτομία).</td>
</tr>
<tr>
<td>1975</td>
<td>Θεωρία της Αιτιολογημένης Δράσης (Theory of Reasoned Action)</td>
<td>Ajzen and Fishbein</td>
<td>Η Πρόθεση Συμπεριφοράς, η στάση (A), και ο Υποκειμενικός κανόνας</td>
</tr>
<tr>
<td>1985</td>
<td>Θεωρία της Προγραμματισμένης Συμπεριφοράς (Theory of Planned Behaviour)</td>
<td>Ajzen</td>
<td>Η Πρόθεση Συμπεριφοράς, η στάση (A), ο Υποκειμενικός κανόνας, ο Αντιλαμβανόμενος Ελέγχος Συμπεριφοράς.</td>
</tr>
<tr>
<td>1986</td>
<td>Κοινωνική Γνωστική Θεωρία (Social Cognitive Theory)</td>
<td>Bandura</td>
<td>Η Επίδραση, η Ανησυχία</td>
</tr>
<tr>
<td>Ετος</td>
<td>Ενώση</td>
<td>Ονοματολογία</td>
<td>Σημείωση</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>1989</td>
<td>Τεχνική υιοθέτηση (Technical Adoption)</td>
<td>Fred D Davis</td>
<td>Η Αντιλαμβανόμενη Χρησιμότητα και η Αντιλαμβανόμενη Ευκολία Χρήσης</td>
</tr>
<tr>
<td>1991</td>
<td>Το μοντέλο χρήσης του υπολογιστή (The Model of PC Utilization)</td>
<td>Thompson et al.</td>
<td>Η Εργασία, η Πολυπλοκότητα, οι Μακροπρόθεσμες συνέπειες, η Επίδραση προς Χρήση, οι Κοινωνικοί Παράγοντες, η Διευκόλυνση Συνθηκών.</td>
</tr>
<tr>
<td>1992</td>
<td>Το μοντέλο κίνητρο (The Motivation Model)</td>
<td>Davis et al.</td>
<td>Εξωγενή κίνητρα (όπως η Αντιλαμβανόμενη Χρησιμότητα, η Αντιλαμβανόμενη Ευκολία Χρήσης και ο Υποκειμενικός Κανόνας) και τα Ενδογενή κίνητρα (όπως οι αντιλήψεις για Ευχαρίστηση και Ικανοποίηση).</td>
</tr>
<tr>
<td>2000</td>
<td>Εκτεταμένο μοντέλο TAM2 (Extended TAM2 model)</td>
<td>Venkatesh and Davis</td>
<td>Διαδικασίες Κοινωνικής Επιρροής (Υποκειμενικός Κανόνας, Εθελοντικότητα και Εικόνα) και Γνωστικές Οργανικές Διαδικασίες (Συνάφεια Θέσης Εργασίας, Ποιότητα Εκροής, Επίδειξη Αποτελεσμάτων και Αντιλαμβανόμενη Ευκολία Χρήσης).</td>
</tr>
<tr>
<td>2003</td>
<td>Ενιαία Θεωρία Αποδοχής και Χρήσης Τεχνολογίας</td>
<td>Venkatesh et al.</td>
<td>Πρόβλεψη Απόδοσης, Προσδοκώμενη Προσπάθεια, Κοινωνική Επιρροή και</td>
</tr>
<tr>
<td>(UTAUT) Unified Theory of Acceptance and Use of Technology (UTAUT)</td>
<td>Συνθήκες Διευκόλυνσης.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Μοντέλο Αποδοχής με υποστήριξη Peer (MAPS) (Model of Acceptance with Peer Support (MAPS))</td>
<td>Πρόθεση Συμπεριφοράς, Χρήση του Συστήματος, Διευκόλυνση των Συνθηκών, Πυκνότητα Δικτύου, Κεντρική Θέση Δικτύου, Αξιόλογη Κεντρική Θέση Δικτύου, Αξιόλογη Πυκνότητα Δικτύου.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Sykes et al.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ως αποδοχή του χρήστη ορίζεται η θετική ανταπόκριση στην υιοθέτηση μιας καινοτόμου τεχνολογίας. Οι παράγοντες αυτοί σχετίζονται τόσο με οικονομικά κριτήρια όπως για παράδειγμα είναι τα κίνητρα μιας επιχείρησης, πολιτικά που έχουν να κάνουν με πολιτικές ατζέντες και στρατηγικές αλλά και με κοινωνικά που αφορά τόσο τεχνολογικά στοιχεία όσο και την κοινωνία ενός πληθυσμού.

Οι συγκεκριμένοι παράγοντες αποτελούν το επίκεντρο πολλών θεωριών οι οποίες με τη σειρά των ετών πολλές έχουν επικρατήσει και επαναλαμβάνονται σε διάφορες μελέτες. Μερικές μάλιστα θεωρίες εντοπίζονται τροποποιημένες στη βιβλιογραφία για να μπορέσουν να αποτέλεσουν εργαλεία αποτίμησης της σημερινής αποδοχής τεχνολογιών. Αυτό που είναι σημαντικό να αναφερθεί είναι ότι πολλές θεωρίες αναπτύχθηκαν ως προεκτάση μιας άλλης προγενέστερης θεωρίας όπως είναι το Μοντέλο Αποδοχής Τεχνολογίας (Technology Acceptance Model - TAM) που αποτελεί προεκτάση της Θεωρίας της Αιτιολογιμένης Δράσης (Theory of Reasoned Action - TRA) ή αντίθετα κάποια να αναπτύχθηκε για να αντικρούσει κάποια άλλη όπως συνέβη στην περίπτωση της Θεωρίας της Σχεδιασμένης Συμπεριφοράς (Theory of planned behaviour - TPB) έναντι της TRA. Επίσης, αρκετές φορές παρατηρήθηκε κάποιες θεωρίες να επεκτείνονται όπως συνέβη με την περίπτωση του TAM που επεκτάθηκε στο TAM2.
Οι θεωρίες και τα μοντέλα αποδοχής τεχνολογίας στοχεύουν να μεταφέρουν την έννοια του τρόπου με τον οποίο οι χρήστες κατανοούν και αποδέχονται τη νέα τεχνολογία και τον τρόπο με τον οποίο μπορούν να την χρησιμοποιήσουν (Momani Μ. Α. & Jamous Μ. Μ., 2017). Όλες οι θεωρίες αποδοχής τεχνολογίας έχουν σχεδιαστεί για να μετρήσουν τον βαθμό αποδοχής των ατόμων απέναντι σε ένα πληροφοριακό σύστημα η τεχνολογία. Διαφέρουν απλά στην δομή και στους παράγοντες που αντιπροσωπεύουν στη δομή τους. Η συγκεκριμένη εργασία κατανοών χρησιμοποιεί και συνδυάζει δύο μοντέλα για να εξηγηθεί η υιοθέτηση νέων τεχνολογιών, που είναι το μοντέλο αποδοχής της τεχνολογίας (TAM) και η Θεωρία Διάχυσης της Καινοτομίας (IDT), που θα αναλυθούν παρακάτω.

Ο Πίνακας 1.2 παρακάτω παρουσιάζει τους ορισμούς των κατασκευών που έχουν προσαρμοστεί στις δύο θεωρίες.

Πίνακας 1.2: Οι ορισμοί όλων των κατασκευών των δύο θεωριών

<table>
<thead>
<tr>
<th>Θεωρία/Μοντέλο</th>
<th>Κατασκευή (Construct)</th>
<th>Ορισμός</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μοντέλο Αποδοχής της Τεχνολογίας (TAM)</td>
<td>Αντιλαμβανόμενη χρησιμότητα</td>
<td>Ο βαθμός στον οποίο ένα άτομο πιστεύει ότι η χρήση ενός συγκεκριμένου συστήματος θα ενίσχυσε την απόδοση της εργασίας του (Davis, 1989)</td>
</tr>
<tr>
<td>Μοντέλο Αποδοχής της Τεχνολογίας (TAM)</td>
<td>Αντιληπτή Ευκολία Χρήσης</td>
<td>Ο βαθμός στον οποίο ένα άτομο πιστεύει ότι το να χρησιμοποιεί ένα συγκεκριμένο σύστημα δεν θα απαιτεί πολύ προσπάθεια (Davis, 1989)</td>
</tr>
<tr>
<td>Θεωρία Διάχυσης της Τεχνολογίας (IDT)</td>
<td>Σχετικό Πλεονέκτημα</td>
<td>Ο βαθμός στον οποίο μια καινοτομία θεωρείται καλύτερη από την ιδέα, το πρόγραμμα ή το προϊόν που αντικαθιστά (Rogers, 2003).</td>
</tr>
<tr>
<td>Θεωρία Διάχυσης της Τεχνολογίας (IDT)</td>
<td>Συμβατότητα</td>
<td>Ο βαθμός στον οποίο μια καινοτομία είναι συνεπής με τις αξίες, τις εμπειρίες και τις ανάγκες των δυνητικών υιοθετούντων</td>
</tr>
<tr>
<td>Θεωρία Διάχυσης της Τεχνολογίας (IDT)</td>
<td>Πολυπλοκότητα</td>
<td>Πόσο δύσκολη είναι η κατανόηση και / ή η χρήση της καινοτομίας (Rogers, 2003).</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Θεωρία Διάχυσης της Τεχνολογίας (IDT)</td>
<td>Δοκιμασία</td>
<td>Ο βαθμός στον οποίο μπορεί να δοκιμαστεί ή να πειραματιστεί η καινοτομία πριν πραγματοποιηθεί η υιοθέτηση της καινοτομίας (Rogers, 2003).</td>
</tr>
<tr>
<td>Θεωρία Διάχυσης της Τεχνολογίας (IDT)</td>
<td>Παρατηρητικότητα</td>
<td>Ο βαθμός στον οποίο η καινοτομία προσφέρει απτά αποτελέσματα (Rogers, 2003).</td>
</tr>
</tbody>
</table>

1.4.1 Μοντέλο Αποδοχής Τεχνολογίας (TAM)

Το Μοντέλο Αποδοχής της Τεχνολογίας (Technology Acceptance Model - TAM) είναι μια θεωρία των πληροφορικών συστημάτων που αναπτύχθηκε για πρώτη φορά από τον Davis το 1989 με σκοπό να προβλέψει και να εξηγήσει την αποδοχή και την χρήση μιας τεχνολογίας από τους χρήστες. Το Μοντέλο αποδοχής τεχνολογίας (TAM), θεωρείται σήμερα το κυρίαρχο αποδεκτό εργαλείο πρόβλεψης για την πρόθεση αποδοχής από τους χρήστες των νέων τεχνολογιών, έχει εφαρμοστεί έως και είχε δοκιμαστεί εμπειρικά.

Αποτελεί επέκταση της Θεωρίας της Αιτιολογημένης Δράσης (TRA) που αναπτύχθηκε από τους Ajzen και Fishbein το 1967 η οποία αποτελεί την παλαιότερη θεωρία αποδοχής τεχνολογίας. Όπως οριστικά, η ιδέα που πρέπει να πρέπει να θεωρήσει η θεωρία της TRA, ότι η μεμονωμένη συμπεριφορά διαμορφώνεται από εξωτερικούς παράγοντες που επηρεάζουν τη συμπεριφοριστική πρόθεση (BI-Behavioral Intention), η οποία επεκτείνεται στην πρόβλεψη της στάσης ενός ατόμου απέναντι σε μία δεδομένη κατάσταση, αποκτά υπόσταση με την ανάπτυξη του TAM. Το μοντέλο TAM εφαρμόζεται για να κατανοηθεί η πρόθεση των παράγοντες της για να κατανοηθεί η πρόθεση του άτομου όσον αφορά την χρήση της τεχνολογίας δηλαδή η στάση
που διαμορφώνεται από την θεωρία του TAM αναπαριστά την στάση προς την συμπεριφορά της αποδοχής και χρήσης της τεχνολογίας. Το TAM υιοθετεί τις αιτιακές σχέσεις του TRA αλλά δεν συμπεριέλαβε τους υποκειμενικούς κανόνες του στην δομή του.

Σύμφωνα με το πρότυπο αποδοχής της τεχνολογίας TAM του Davis, υπάρχουν δύο σημαντικοί καθοριστικοί παράγοντες που εξηγούν τις συμπεριφορές αποδοχής μιας τεχνολογίας από τα άτομα. Οι δύο πιο σημαντικές πεποιθήσεις είναι η Αντιλαμβανόμενη Χρησιμότητα (Perceived Usefulness-PU) και η Αντιλαμβανόμενη Ευκολία Χρήσης (Perceived Ease of Use–PEU) που καθορίζουν την αποδοχή της τεχνολογίας.

Το μοντέλο TAM ορίζει ως την αντιλαμβανόμενη χρησιμότητα PU «το βαθμό, στον οποίο ένα άτομο πιστεύει ότι χρησιμοποιώντας ένα συγκεκριμένο σύστημα θα βελτιώσει την απόδοσή του στην εργασίά του» (Davis et al., 1989) και ως αντιλαμβανόμενη ευκολία χρήσης PEU «το βαθμό, στον οποίο ένα άτομο πιστεύει ότι η χρήση ενός συγκεκριμένου συστήματος δεν θα απαιτεί προσπάθεια, θα είναι εύκολη» (Davis et al., 1989). Η αντιληπτή χρησιμότητα θεωρείται μια οργανική μεταβλητή ενώ η αντιληπτή ευκολία χρήσης υποδηλώνει την ηδονική εμπειρία όταν χρησιμοποιεί μια ορισμένη τεχνολογία (Sun Sunny, 2019). Αυτοί οι δύο παράγοντες επηρεάζονται από εξωτερικές μεταβλητές (Surendran Priyanka, 2012). Το TAM παρέχει μια βάση με την οποία κανείς παρακολουθεί πώς οι εξωτερικές μεταβλητές επηρεάζουν την πεποίθηση, τη στάση και την πρόθεση χρήσης (Sung Youl Park, 2019).

Όπως φαίνεται στην παρακάτω εικόνα, το μοντέλο του Davis συμπληρώνεται από την έννοια της Στάσης προς τη Χρήση (Attitude Towards Use) που είναι η αξιολόγηση του συστήματος από τον χρήστη όσον αφορά την αποδοχή της Τεχνολογίας της Πληροφορίας (Information Technology) και την έννοια της Συμπεριφορικής Πρόθεσης για Χρήση (Behavioural Intention to Use) που είναι ένα μέτρο της πιθανότητας ότι ένα άτομο θα χρησιμοποιήσει μια συγκεκριμένη τεχνολογία/σύστημα. Τέλος υπάρχει η Πραγματική Χρήση (Actual Use), η οποία είναι εξαρτημένη μεταβλητή του TAM και υπολογίζεται με τη χρονική διάρκεια ή τη συχνότητα χρήσης μιας τεχνολογίας. Σύμφωνα με τους Fishbein και Ajzen (1975) η πρόθεση συμπεριφοράς ορίζεται ως μέτρο της αντοχής του ατόμου πρόθεση να εκτελέσει μια συγκεκριμένη συμπεριφορά (Alsamydai Jasim Mahmood, 2014).
Εικόνα 1.1: Το Μοντέλο TAM

Πηγή: (Venkatesh & Davis, 1996)

Το Μοντέλο Αποδοχής της Τεχνολογίας είναι το μοντέλο αυτό που έχει καταγράψει τη μεγαλύτερη προσοχή της επιστημονικής κοινότητας (Chuttur, 2009). Είναι το μοντέλο που συγκαταλέγεται στις πιο σημαντικές θεωρίες για την εξήγηση της συμπεριφορικής πρόθεσης των τελικών χρηστών για καινούριες τεχνολογίες. Είναι το πιο ευρέως διαδεδομένο μοντέλο το οποίο έχει δοκιμαστεί σε πάρα πολλές μελέτες που ερευνούν πως φτάνουν στο σημείο να αποδεχθούν και να χρησιμοποιήσουν μια τεχνολογία. Το TAM έχει αποδειχθεί ότι είναι ένα θεωρητικό μοντέλο που βοηθά να εξηγηθεί και να προβλεφθεί η αποδοχή της τεχνολογίας (Legris, Ingham, & Collerette, 2003).

Η μέχρι σήμερα έρευνα έχει αποδείξει την ισχύ του συγκεκριμένου μοντέλου, το οποίο είναι πια ευρέως αποδεκτό. Έχει γίνει το πιο ευρέως εφαρμοσμένο και επικυρωμένο μοντέλο για την εξήγηση και πρόβλεψη των προθέσεων χρήσης και των συμπεριφορών αποδοχής των τεχνολογιών (Sivo Anthony Stephen et al. , 2018). Το TAM έχει χρησιμοποιηθεί επανειλημμένα από πολλούς μελετητές για διαφορετικές τεχνολογίες από τότε που δημοσιεύθηκε για πρώτη φορά και έτσι έχει χρησιμοποιηθεί ευρέως για την υιοθέτηση τεχνολογίας τρεις τελευταίες δεκαετίες σε διάφορα περιβάλλοντα. Σύμφωνα με τον Wiley-Patton αποδίδουν τη δύναμη του TAM στην πανταχού παρούσα εφαρμογή του (Ghaith Al Waleed, 2015).

Ωστόσο, το TAM είναι επίσης ένα σχετικά απλό μοντέλο το οποίο μπορεί να τροποποιηθεί ή να επεκταθεί με διάφορες τρόπους και, συνεπώς, στη βιβλιογραφία υπάρχουν πολλές επεκτάσεις που ενσωματώνουν άλλες θεωρίες (Zhang, Guo & Chen,
27

2008). Με την πάροδο του χρόνου, υπάρχει εκτενής ερευνητική δραστηριότητα που έχει συμπεριλάβει πολλές παραλλαγές και επεκτάσεις του μοντέλου.

1.4.2 Θεωρία διάχυσης της καινοτομίας (IDT)

Η θεωρία της διάχυσης της καινοτομίας (Diffusion of Innovation Theory - (IDT)) προτάθηκε από τον κοινωνιολόγο καθηγητή επικοινωνίας Everett Rogers. Η θεωρία διάχυσης καινοτομίας του Rogers (IDT) είναι μια από τις πιο δημοφιλείς θεωρίες για τη μελέτη της υιοθέτησης των τεχνολογιών της πληροφορίας (IT) και την κατανόησή του τρόπου με τον οποίο οι καινοτομίες διαχέονται εντός και μεταξύ των κοινοτήτων (Rogers, 1995).

Ο Rogers ανέπτυξε ένα πλαίσιο στο οποίο επιδιώκει να εντοπίσει τους παράγοντες που θα εξηγήσουν πώς, γιατί και με ποιο ρυθμό εξαπλώνονται καινοτομίες, δηλαδή νέες ιδέες και τεχνολογίες. Το πλαίσιο αποτελείται από μια ποικιλία διαφορετικών μεταβλητών, οι οποίες συνδέονται με το ρυθμό υιοθέτησης καινοτομιών. Η πρόθεσή του με το μοντέλο ήταν να ανακαλύψει «ψώς οι ιδιότητες των καινοτομιών επηρεάζουν την υιοθέτησή τους» (Rogers, 1995, p. 204). Ως εκ τούτου, η θεωρία IDT υποστηρίζει ότι "οι δυνητικοί χρήστες λαμβάνουν αποφάσεις για να υιοθετήσουν ή να απορρίψουν μια καινοτομία βασισμένη σε πεποιθήσεις που διαμορφώνονται για την καινοτομία (Karahanna, et al., 1999) ".

Συγκεκριμένα, στο βιβλίο του Diffusion of Innovations, o Rogers ορίζει την Καινοτομία ως "μια ιδέα, μια διαδικασία που αντλαμβάνεται ως νέα από ένα άτομο εντός συγκεκριμένου τομέα ή ενός κοινωνικού πλαίσιο« (Rogers, 2003). Από την άλλη, ο άλλος όρος κλειδιά η διάχυση, αντλαμβάνεται και ορίζεται ως "η διαδικασία με την οποία οι πληροφορίες σχετικά με την καινοτομία ρέουν από το ένα άτομο στο άλλο στο κοινωνικό σύστημα μέσω ορισμένων καναλιών". (Rogers, 1995).

Η διάχυση της καινοτομίας είναι ένας αναγνωρισμένος όρος στη βιβλιογραφία των πληροφοριακών συστημάτων και γι’ αυτό το λόγο οι θεωρίες διάχυσης ποικίλουν καλύπτοντας πολλά κλάδους κλάδους. Η πρώτη διάχυση βασίζοταν σε ένα γραμμικό μοντέλο επικοινωνίας όπου η καινοτομία μεταδίδοταν απευθείας από τον αποστολέα στον δέκτη. Στην περίπτωση αυτή, μια καινοτομία είτε υιοθετούνταν είτε απορρίπτονταν.

Η θεωρία του Rogers αναγνωρίζει πλήθος παραγόντων που σχετίζονται με τα χαρακτηριστικά της καινοτομίας τα οποία με τη σειρά τους επηρεάζουν τον ρυθμό και τον
βαθμό υιοθέτησης. Συγκεκριμένα, υποστηρίζει ότι "το 49 έως 87 τοις εκατό της διακύμανσης του ποσοστού υιοθεσίας μπορεί να εξηγηθεί από πέντε χαρακτηριστικά" (Rogers, 1995, p. 206). Για να κατανοηθεί βαθύτερα λοιπόν η διαδικασία υιοθέτησης μιας καινοτομίας της συγκεκριμένης θεωρίας, θα πρέπει να καθοριστούν τα χαρακτηριστικά γνωρίσματα αυτών των πέντε διακριτών χαρακτηριστικών.

Σχήμα 1.1: Τα 5 χαρακτηριστικά της καινοτομίας σύμφωνα με τον Rogers

Συμβατότητα: αναφέρεται στον βαθμό στον οποίο η καινοτομία θεωρείται συνεπής με τις υπάρχουσες αξίες και συνήθειες των χρηστών, της εμπειρίας του παρελθόντος και τις ανάγκες των δυνητικών χρηστών" (Rogers, 1995, p. 224). Θεωρείται πως όσο πιο συμβατή
είναι μια καινοτομία με τον τρόπο ζωής ενός ατόμου, τόσο πιο πιθανό είναι να υιοθετηθεί με υψηλότερο ρυθμό.

Πολυπλοκότητα → Ορίζεται ως ο βαθμός στον οποίο κατά πόσο μπορεί μια καινοτομία να γίνει αντιληπτή, κατανοητή και εύκολα εφαρμόσιμη για να χρησιμοποιηθεί από τους τελικούς χρήστες. Η πολυπλοκότητα είναι έξι έτη ένα σημαντικό χαρακτηριστικό καθώς έχει διαπιστωθεί πως επηρεάζει με θετικό ή αρνητικό τρόπο την υιοθέτηση μιας τεχνολογίας καθώς συνδέεται με την ευκολία χρήσης τους. Προς υποστήριξη αυτής της αντίληψης, έρχεται η έρευνα των Rogers, Daley και Wu (1980), οι οποίοι επισήμαναν ότι στα τέλη της δεκαετίας του 1970, η πολυπλοκότητα των οικιακών υπολογιστών σαν ένα καινούργιο προϊόν, είχε αρνητικό αντίκτυπο στην υιοθέτησή τους και χρειάστηκε μια περίοδος εξι πενήντα εβδομάδων έντονης απογοήτευσης για να υιοθετηθεί ο υπολογιστής από κάποιον adopter. Μια καινοτομία που είναι λιγότερο περίπλοκη είναι πιο πιθανό να γίνει αποδεκτή από τους τελικούς χρήστες (Tornatzky & Klein, 1982).

Δοκιμασία → Η δυνατότητα δοκιμής αναφέρεται στον βαθμό στον οποίο μπορεί μια καινοτομία να δοκιμαστεί σε περιορισμένη βάση, πριν την απόφαση για υιοθέτησή της. Η δοκιμασία έχει αποδείξει ότι είναι έναν ενδιαφέρον χαρακτηριστικό του μοντέλου διάχυσης της καινοτομίας καθώς δίνοντας τη δυνατότητα σε ένα άτομο να «εξερευνήσει», να δοκιμάσει μια καινοτομία με τους δικούς του προσωπικού όρους, πριν βρεθεί αντιμέτωπος με μια απόφαση έγκρισης, καταλήγει ο παράγοντας αυτός να έχει θετική επίδραση στην υιοθεσία. Η υιοθεσία είναι πιθανότερη.

Παρατηρητικότητα → Το τελευταίο χαρακτηριστικό του μοντέλου είναι η παρατηρητικότητα που ορίζεται ως ο βαθμός στον οποίο τα αποτελέσματα μιας καινοτομίας είναι ορατά από άλλους ανθρώπους, τη δυνατότητα δηλαδή επικοινωνίας των αποτελεσμάτων χρήσης. Παρατηρείται επίσης ότι κι αυτό το χαρακτηριστικό φέρεται να έχει θετική επίδραση στο ποσοστό υιοθεσίας. Όσο πιο εύκολο είναι να αντιληφθεί το άτομο το θετικό αποτέλεσμα μιας καινοτομίας, τόσο πιο πιθανό είναι ο ρυθμός υιοθέτησης και διάχυσης να αυξηθεί και η καινοτομία να εγκριθεί.

Τα πέντε κύρια χαρακτηριστικά, μπορούν να εξηγήσουν την υιοθέτηση καινοτομιών από τον τελικό χρήστη και επηρεάζουν το ρυθμό υιοθέτησής μιας καινοτομίας από το κάθε μέλος ενός κοινωνικού συστήματος. Τα μέλη ενός κοινωνικού συστήματος δεν υιοθετούν ταυτόχρονα μια καινοτομία. Οι αποφάσεις δεν είναι συλλογικές καθώς το κάθε άτομο

Επίσης, εκτός από τα πέντε (5) χαρακτηριστικά του μοντέλου που αφορούν την καινοτομία και δίνουν το πλαίσιο για να κατανοηθεί η διαδικασία υιοθέτησης της, o Rogers (1995) υποστηρίζει ότι υπάρχουν πέντε (5) στοιχεία που είναι κρίσιμα για τη διάχυση της καινοτομίας και επηρεάζουν το ρυθμό της υιοθεσίας, η ίδια η καινοτομία που αναφέραμε αλλά και τα κανάλια επικοινωνίας, ο χρόνος και το κοινωνικό σύστημα.

Εικόνα 1.2: Τα 5 στοιχεία που είναι κρίσιμα για την Διάχυση της Καινοτομίας

(Πηγή: Rogers, 2003)

Τα κανάλια επικοινωνίας αναφέρονται στο μέσο μέσο του οποίου οι άνθρωποι λαμβάνουν τις πληροφορίες σχετικά με την καινοτομία και τη χρησιμότητά της. Αφορά τόσο τα μέσα μαζικής επικοινωνίας όσο και την διαπροσωπική επικοινωνία. Τα κανάλια επικοινωνίας αποτελούν σημαντικό μεταβλητή για τον ρυθμό της υιοθεσίας και αποτελούν
το μέρος οποιασδήποτε διαδικασίας αλλαγής διότι είναι αυτό μέσω του οποίου θα διαχυθεί μια καινοτομία. Επιτρέπει την διάδοση της καινοτομίας, αλλά επηρεάζει και το ρυθμό υιοθεσίας.

Σύμφωνα με το μοντέλο του Rogers, το κατασκεύασμα του κοινωνικού μας συστήματος, των κανόνων και του τρόπου διασύνδεσής του δικτύου επικοινωνίας, επηρεάζουν το ρυθμό υιοθέτησης καινοτομίων. Επιπλέον, η διαδικασία απόφασης για την καινοτομία διευκρινίζει ότι "όσο περισσότεροι άνθρωποι συμμετέχουν στην απόφαση για την καινοτομία, τόσο πιο αργός είναι ο ρυθμός υιοθεσίας" (Rogers, 1995, σελ. 206-207).

Εικόνα 1.3: Το εννοιολογικό πρότυπο διάχυσης της καινοτομίας

Πηγή: (Rogers, E.M., 1995).

Η διάχυση εκδηλώνεται με διαφορετικούς τρόπους και εξαρτάται σε μεγάλο βαθμό από το είδος των υιοθετούντων και τη διαδικασία λήψης αποφάσεων για την καινοτομία. Η
διάχυση επηρεάζεται επίσης από το ευρύτερο πλαίσιο, όπως είναι τα συμφέροντα των εμπλεκομένων, το πολιτικό κλίμα και τις προσδοκίες του κόσμου. Η διάχυση των καινοτομιών είναι μια περίπλοκη διαδικασία που επηρεάζεται από ένα ευρύτερο πλαίσιο και γι’ αυτό είναι πολύ σημαντικό να καθορίσουμε τα στάδια της διαδικασίας διάχυσης. Τα 5 στάδια της διαδικασίας έγκρισης μιας τεχνολογίας φαίνεται στην παραπάνω εικόνα και είναι:

- Η Γνώση- ο άνθρωπος λαμβάνει γνώση μιας καινοτομίας και έχει κάποια ιδέα για το πώς λειτουργεί
- Η Πειθώ- το άτομο σχηματίζει θετική ή αρνητική στάση απέναντι στην καινοτομία,
- Η Απόφαση- το άτομο συμμετέχει σε δραστηριότητες που οδηγούν σε επιλογή για υιοθέτηση ή απόρριψη της καινοτομίας
- Η Εφαρμογή- το άτομο χρησιμοποιεί μια καινοτομία
- Η Επικύρωση/Επιβεβαίωση- το άτομο αξιολογεί τα αποτελέσματα μιας ήδη υπάρχουσας απόφασης για την καινοτομία.

Ο Rogers υποδηλώνει ότι τα μέσα μαζικής ενημέρωσης είναι συχνά τα πιο γρήγορα, ισχυρά και αποτελεσματικά μέσα στη διάχυση, επειδή μπορεί να διαδώσει τη γνώση για την καινοτομία σε μεγάλους αριθμούς δυνητικών χρηστών γρήγορα, αλλά η διαπροσωπική επικοινωνία με την ίδια κοινωνικοοικονομική κατάσταση θεωρείται ότι είναι γενικά πιο αποτελεσματική για να πειστούν οι δυνητικοί υιοθετούντες να δεχτούν μια καινοτομία (Rogers, 1995). Υπάρχει όμως και η άλλη άποψη που αναφέρει ότι τα διαπροσωπικά κανάλια ενδέχεται να επιβραδύνουν το ρυθμό υιοθεσίας για τους αργοπορημένους εν δυνάμει χρήστες καθώς δημιουργούν ευαισθητοποίηση στη γνώση (knowledge awareness). (Rogers, 1995).

Ο Rogers χαρακτηρίζει επίσης τα άτομα ενός κοινωνικού συστήματος σε πέντε ομάδες με βάση τη στάση τους απέναντι στην καινοτομία: είναι οι καινοτόμοι, οι πρώτοι υιοθετούντες, η πρόωρη πλειοψηφία (early majority), η αργή πλειοψηφία (late majority) και οι αργοπορημένοι. Οι καινοτόμοι, που αντιπροσωπεύουν το 2,5% του πληθυσμού σε ένα κοινωνικό σύστημα, είναι η πρώτη ομάδα που υιοθετεί μια καινοτομία. Σύμφωνα με τον Rogers (2003), οι καινοτόμοι έχουν την ικανότητα να κατανοούν και να εφαρμόζουν πολύπλοκες τεχνικές γνώσεις που είναι απαραίτητες για την εισαγωγή της καινοτομίας εκτός
του κοινωνικού Συστήματος. Η επόμενη ομάδα είναι οι πρώτοι υιοθετούντες, οι οποίοι είναι ένα πιο ολοκληρωμένο μέρος του κοινωνικού συστήματος από τους πρωτοπόρους. Τείνουν να είναι καλά ενημερωμένοι για την καινοτομία, καλά συνδεδεμένοι με τις νέες τεχνολογίες και πιο οικονομικά επιτυχείς. Οι πρώτες δύο κατηγορίες υιοθετούντων αποτελούν το 16% του πληθυσμού σε ένα κοινωνικό σύστημα, όπως φαίνεται στην παρακάτω εικόνα.

Εικόνα 1.4: Οι κατηγορίες των υιοθετούντων σύμφωνα με τη θεωρία του Rogers

Πηγή: Tatnall A., 2000

Οι επόμενες δύο ομάδες, οι οποίες αντιπροσωπεύουν το 68% του πληθυσμού ενός κοινωνικού συστήματος, είναι οι πρόωροι και οι αργοί υιοθετούντες. Το τελευταίο 16% των ατόμων, είναι οι ισχυρότεροι αντιστασιακοί για μια καινοτομία και είναι πολύ πιθανό να γίνουν μη υιοθετούντες λόγω των περιορισμένων πόρων και της έλλειψης της ευαισθητοποίησης ή της γνώσης της καινοτομίας (Rogers, 1995).

Η θεωρία Διάχυσης της Καινοτομίας έχει εφαρμοστεί ευρέως σε διάφορους τομείς, χρησιμοποιείται μέχρι και σήμερα, και αποτελεί την πιο γνωστή θεωρία σχετικά με την τεχνολογική καινοτομία. Σε σύγκριση με το μοντέλο Αποδοχής της Τεχνολογίας (TAM), η διάχυση της θεωρίας της καινοτομίας είναι πιο ολοκληρωμένη στην παροχή ενός σε βάθος εννοιολογικού πλαισίου σχετικά με τις επιδράσεις των κοινωνικο-τεχνικών παραγόντων στην υιοθεσία.
1.4.3 Ενοποίηση του Μοντέλου Αποδοχής της Τεχνολογίας και της Θεωρίας Διάχυσης της Καινοτομίας (TAM & IDT)

Η συγκεκριμένη έρευνα προτείνει ένα ενοποιημένο μοντέλο που βασίζεται στο μοντέλο Αποδοχής της Τεχνολογίας (TAM) και στην Θεωρία Διάχυσης της Τεχνολογίας (IDT) για να διερευνήσει την πρόθεση αποδοχής των δύο εναλλακτικών καυσίμων, του LNG και της ηλεκτρικής ενέργειας ως ναυτιλιακά καύσιμα αξιοποιώντας αυτά τα δύο θεωρητικά μοντέλα. Πολλές εμπειρικές μελέτες συνιστούν την ενσωμάτωση του TAM με άλλες θεωρίες για να αντιμετωπίσει τις ραγδαίες αλλαγές στις τεχνολογίες και να βελτιώσει την εξειδίκευση και την εξηγητική ισχύ (Carter & Belanger, 2005, Legris, et al., 2003).

Αυτό συμβαίνει κυρίως γιατί το TAM, ενώ αντιμετωπίζεται ως ένα καλό θεωρητικό μοντέλο για να εξηγήσει την αποδοχή της νέας τεχνολογίας, παραμένει αμφίβολο αν μπορεί να εφαρμοστεί σε όλες τις περιπτώσεις υιοθέτησης νέων τεχνολογιών. Για παράδειγμα, το μοντέλο TAM παρέχει ανατροφοδότηση σε δύο παράγοντες, την χρησιμότητα και την ευκολία χρήσης, αλλά, δεν περιλαμβάνει ηττη καμία κοινωνική μεταβλητή που μπορεί να ενισχύσει την υιοθεσία, ούτε δείχνει πως σχετίζονται οι κατασκευές. Αντίστροφα, η θεωρία IDT, εξηγεί την υιοθεσία μιας καινοτομίας αλλά δεν αναφέρει πόση στάση επηρεάζει την αποδοχή ή την απόρριψη των αποφάσεων. Ενώ η θεωρία IDT ενσωματώνει πιο περιεκτικούς παράγοντες, συσσωρευμένους εμπειρικά, τα στοιχεία έχουν δείξει ότι το μοντέλο TAM παρέχει ένα καλύτερο μηχανισμό για την επεξήγηση της αναγνώρισης αποδοχής από τον χρήστη και τη συμπεριφορά (Lou, T.F. & Li, E.Y., 2017).

Επομένως, με αυτό το ενοποιημένο μοντέλο, θα έχουμε ένα πιο ισχυρό εργαλείο για την αξιολόγηση της αποδοχής της τεχνολογίας καθώς πολύ συχνά ασκείται σαν κριτική στο μοντέλο του TAM πως δεν περιλαμβάνει κοινωνικά χαρακτηριστικά και πως οι πληροφορίες αυτές δεν θεωρούνται επαρκείς στην διαδικασία της υιοθέτησης μιας τεχνολογίας. Η αποδοχή ή η απόρριψη της τεχνολογίας είναι μια περίπλοκη διαδικασία που δεν μπορεί να εξηγηθεί από δύο μεταβλητές. Έτσι, η ενσωμάτωση αυτών των δύο θεωριών θα μπορούσε να αποτελέσει ένα ακόμα πιο ισχυρό μοντέλο (Wu & Wang, 2005).

Στο συνδυασμένο αυτό θεωρητικό μοντέλο, θα προστεθούν νέα κατασκευάσματα που θα συμβάλλουν στην καλύτερη αξιολόγηση γύρω από τις συγκεκριμένες τεχνολογίες. Αυτά τα κατασκευάσματα είναι γνωστά ως εξωτερικοί μεταβλητές (πχ χαρακτηριστικά συστήματος) που εξετάζονται στο μοντέλο TAM σε συνδυασμό με τα κατασκευάσματα που
προσβέδει η θεωρία διάχυσης της καινοτομίας. Ένας από τους κύριους στόχους αυτού του υβριδικού μοντέλου είναι να εξετάσουμε τις εξωτερικές μεταβλητές που επηρεάζουν την τη στάση και την πρόθεση να υιοθετηθεί μια τεχнологία.

Μέχρι στιγμής, υπάρχουν κάποιες μελέτες που ενσωμάτωσαν επιτυχώς το IDT στο TAM για να ερευνήσουν την αποδοχή της τεχνολογίας των χρηστών και απέδειξαν καλά αποτελέσματα ενσωμάτωσης των δύο μοντέλων (Sigala, Airey, Jones & Lockwood, 2000, Wu & Wang, 2005, Chang & Tung, 2008). Ωστόσο, λίγοι έχουν προσπαθήσει να εξετάσουν όλα τα χαρακτηριστικά της IDT με την ενσωμάτωση του TAM.

Υπάρχει μια μελέτη σχετικά με την διάχυση της καινοτομίας, που πραγματοποίησαν οι Tomatzky και Klein, και διαπίστωσαν ότι μόνο το σχετικό πλεονέκτημα, η συμβατότητα και η πολυπλοκότητα είχαν συνέπεια στην υιοθέτηση τεχνικών καινοτομιών (Tomatzky & Klein, 1982). Επομένως, υπάρχουν και μεταγενέστερες έρευνες, που ενσωματώνουν τις δύο θεωρίες αλλά χορίς να ενσωματώνουν και να εξετάζουν όλα τα χαρακτηριστικά της καινοτομίας ως καθοριστικοί παράγοντες στην αποδοχή μιας τεχνολογίας (Lou, T.F. & Li, E.Y. (2017)).

Η μελέτη αυτή συμβάλλει στη βιβλιογραφία του TAM εξετάζοντας τις σχέσεις μεταξύ όλων των χαρακτηριστικών της θεωρίας διάχυσης της καινοτομίας στο ίδιο μοντέλο. Το μοντέλο Τεχνολογικής Αποδοχής και Η Θεωρία Διάχυσης της Τεχνολογίας είναι παρόμοια σε μερικές δομές και αλληλοσυμπληρώνονται για να εξετάσουν την υιοθέτηση μιας καινοτομίας.

Οι ερευνητές υποδεικνύουν ότι τα δύο κατασκευάσματα που χρησιμοποιούνται στο TAM είναι βασικά ένα υποσύνολο των πέντε χαρακτηριστικών της καινοτομίας. Για παράδειγμα, η αντιλαμβανόμενη χρησιμότητα (PU) φέρεται να είναι παρόμοια με το χαρακτηριστικό του σχετικού πλεονέκτηματος (RAD) και η αντιλαμβανόμενη ευκολία χρήσης συλλαμβάνεται στο κατασκεύασμα της πολυπλοκότητας στη Θεωρία Διάχυσης της Τεχνολογίας.

Σε αυτή την έρευνα, βελτιώνουμε το μοντέλο TAM συνδυάζοντας όλα τα χαρακτηριστικά της IDT, για να μπορούν να αντιμετωπίσουν ως εξωτερικές μεταβλητές, οι οποίες άμεσα επηρεάζουν τα κατασκευάσματα στο μοντέλο αποδοχής τεχνολογίας, προσθέτοντας κι άλλες επιλεγμένες εξωτερικές μεταβλητές σχετικά με ζητήματα των δύο
καινοτόμων τεχνολογιών που αποτελούν το αντικείμενο μελέτης στην παρούσα έρευνα, για να αυξήσουν την αξιοπιστία και την αποτελεσματικότητα της μελέτης.

1.5 Διάρθρωση της Εργασίας

Η διατριβή αυτή είναι διαρθρωμένη ώστε να παρέχει μια κριτική επισκόπηση των παραγόντων που αφορούν την χρήση της τεχνολογία του LNG και της ηλεκτρικής ενέργειας ως εναλλακτικά κάσιμα στην ελληνική ναυτιλιακή βιομηχανία. Επίσης, για να αναδείξει το υβριδικό μοντέλο που κατασκευάζεται από δύο εξέχοντα μοντέλα και θεωρίες για αποδοχή της τεχνολογίας.

Η παρούσα διπλωματική εργασία είναι δομημένη σε πέντε (5) κεφάλαια ως εξής:

- Στο πρώτο κεφάλαιο της διπλωματικής εργασίας παρουσιάζεται το πρόβλημα της κλιματικής αλλαγής και η ανάγκη της ναυτιλίας για επανατοποθέτηση σε βιώσιμες τεχνολογίες. Επίσης, διατυπώνεται το ερευνητικό ερώτημα και η σημαντικότητα του, ο σκοπός και οι στόχοι της συγκεκριμένης μελέτης, οι περιορισμοί αλλά και μια ανασκόπηση της βιβλιογραφίας παρέχοντας μια κατάνοηση του θεωρητικού υποβάθρου που θα χρησιμοποιηθεί στο ερευνητικό μοντέλο στα επόμενα κεφάλαια. Στο τέλος βρίσκεται και η διάρθρωση της εργασίας.

- Στο δεύτερο κεφάλαιο, παρουσιάζεται η υπάρχουσα βιβλιογραφία που αφορά τις δύο τεχνολογίες που αφορούν το αντικείμενο μελέτης της συγκεκριμένης έρευνας, το LNG και η ηλεκτρική ενέργεια. Θα γίνει μια αναφορά στα εναλλακτικά κάσιμα που αναδύθηκαν στην ανάγκη για μετάβαση στην αειφόρο ανάπτυξη και έπειτα θα γίνει περαιτέρω ανάλυση στις δύο τεχνολογίες. Θα γίνει επίσης μια αναφορά στις πολιτικές ατζέντες που δρομολογούνται για την καθιέρωση της χρήσης του LNG και της ηλεκτρικής ενέργειας στην Ανατολική Μεσόγειο, συμπεριλαμβανομένου της Ελλάδας εφόσον είναι το τοπικό πλαίσιο που μας ενδιαφέρει για την μελέτη αποδοχής τους από τα ενδιαφερόμενα μέρη.

- Στο τρίτο κεφάλαιο, θα γίνει η παρουσίαση της μεθοδολογίας που ακολουθήθηκε για την ανάπτυξη του ερωτηματολογίου καθώς και ο σχεδιασμός του προτεινόμενου ερευνητικού μοντέλου. Επίσης, γίνεται αναγνώριση των παραγόντων που οδηγούν στην χρήση των εναλλακτικών καύσιμων στην ναυτιλία και θα παρουσιαστούν οι
ερευνητικές υποθέσεις του μοντέλου, οι οποίες θα δοκιμαστούν στο επόμενο κεφάλαιο.

- Στο τέταρτο κεφάλαιο θα γίνει η παρουσίαση και η ανάλυση των αποτελεσμάτων του ερευνητικού μοντέλου. Παρουσιάζονται αναλυτικά τα αποτελέσματα των δημογραφικών στοιχείων καθώς και οι συσχετίσεις των παραγόντων, όπως παρουσιάζονται στα αποτελέσματα μας. Θα παρουσιαστούν αναλύσεις για όλες τις μεταβλητές και τις υποθέσεις τους και θα συνάγει αποτελέσματα για συζήτηση. Επιπλέον, θα πραγματοποιηθεί η αξιοπιστία του υβριδικού μοντέλου αλλά και η σχέση των stakeholders του δείγματος με την Καινοτομικότητα.

- Στο πέμπτο κεφάλαιο συνοψίζονται και παρουσιάζονται τα συμπεράσματα της διπλωματικής εργασίας και αναλύονται οι μελλοντικές κατευθύνσεις που θα μπορούσε να ακολουθήσει η μελέτη και η συνεισφορά της.

Παρακάτω παρουσιάζεται σχηματικά η δομή της διπλωματικής εργασίας.

Εικόνα 1.5: Η διάρθρωση της διπλωματικής εργασίας
ΚΕΦΑΛΑΙΟ 2ο: ΕΝΑΛΛΑΚΤΙΚΑ ΚΑΥΣΙΜΑ

2.1 Εναλλακτικά καύσιμα στην Ναυτιλία

Σήμερα, η χρήση εναλλακτικών καυσίμων θεωρείται βασικός τομέας βιώσιμης τεχνολογικής ανάπτυξης στις θαλάσσιες μεταφορές. Ως «εναλλακτικά καύσιμα», σύμφωνα με την οδηγία 2014/94 (European Union law, ΟΔΗΓΊΑ 2014/94/ΕΕ) “νοούνται τα καύσιμα ή οι πηγές ενέργειας που χρησιμοποιούν, τουλάχιστον εν μέρει, ως υποκατάστατο των πηγών ορυκτών πετρελαίων στον ενεργειακό εφοδιασμό των μεταφόρων και οι οποίες έχουν τη δυνατότητα να συμβάλουν στη μείωση του άνθρακα και να ενισχύουν την περιβαλλοντική απόδοση του τομέα των μεταφόρων”.

Στα επόμενα χρόνια η χρήση των εναλλακτικών καυσίμων στη ναυτιλία αναμένεται να προσελκύσει όλο και περισσότερο το ενδιαφέρον των stakeholders της ναυτιλιακής βιομηχανίας, για λόγους που σχετίζονται με τις νέες προδιαγραφές καυσίμων, αλλά και με την ανάγκη περιορισμού των εκπυκνώμενων ρύπων. Οι μεγαλύτερες ευκαιρίες για την απεξάρτηση της ναυτιλίας από τον άνθρακα βρίσκονται στην ανακάλυψη νέων ανανεώσιμων πηγών ενέργειας.

Η χρήση εναλλακτικών πηγών ενέργειας στη ναυτιλία μπορεί να μετριάσει τις ατμοσφαιρικές εκπομπές που διαχέονται στο περιβάλλον από τις δραστηριότητες/θαλάσσιες μεταφορές των πλοίων. Τα εναλλακτικά καύσιμα πλοίων είναι καύσιμα διαφορετικά από τα συμβατικά καύσιμα πλοίων, όπως το βαρύ μαζούτ και έχουν χαμηλή περιεκτικότητα σε θείο. Οι πιο σημαντικές εκπομπές από τις θαλάσσιες μεταφορές, είναι τα οξείδια του αζώτου (NOx), τα οξείδια του θείου (SOx), το μονοξείδιο του άνθρακα (CO), το διοξείδιο του άνθρακα (CO2) και τα σωματίδια (PM).

Οι μεταφορές και οι ναυτιλιακές δραστηριότητες συντελούν σε μεγάλο βαθμό στην ρύπανση της ατμόσφαιρας στη θάλασσα, όπως το μεγαλύτερο μέρος τους συμβαίνει ως αποτέλεσμα των εκπυκνώμενων καυσαερίων από τα πλοία. Παρόλο που η ναυτιλία θεωρείται το φιλικότερο μέσο, διότι τα πλοία έχουν τη δυνατότητα να μεταφέρουν πολύ περισσότερους τόνους φορτίου ανά χιλιόμετρο σε σχέση με τα υπόλοιπα μέσα μεταφοράς, αναμένεται να αυξηθεί κι άλλο το εμπόριο, οπότε πρέπει να ληφθούν μέτρα.

Η μετάβαση στη βιώσιμη καρδιά κυρίαρχη έδαφος στη γνωστή έννοια, η οποία μεταχειματίζεται όστο να πληρούνται οι νέοι κανονισμοί από τον Διεθνή Ναυτιλιακό οργανισμό (IMO). Η νομοθεσία που αποβλέπει αυτοστρόφως ήρθε σε σχέση στα ναυτιλιακά
καύσιμα είναι η κινητήρια δύναμη για την προώθηση του LNG και της ηλεκτρικής ενέργειας.

Τον Σεπτέμβριο του 2015, τα 193 κράτη μέλη του ΟΗΕ ενέκριναν ομόφωνα ένα σχέδιο δράσης για το 2030, την Ατζέντα για την Αειφόρο Ανάπτυξη, συμπεριλαμβανομένων των στόχων της Αειφόρου Ανάπτυξης (SDG) και 169 συναφείς στόχους. Ο Διεθνής Ναυτιλιακός Οργανισμός (IMO) αναγνώρισε πως για να εφαρμοστεί η Ατζέντα του 2030, έπρεπε να ληφθούν υπόψη εθνικές πολιτικές και στρατηγικές. Επομένως, στο πλαίσιο της βιώσιμης στρατηγικής έχει αναπτύξει διάφορες ενέργειες για τη ρύθμιση της ατμοσφαιρικής ρύπανσης από τα πλοία. Συγκεκριμένα, με το τελευταίο παράρτημα VI της Σύμβασης MARPOL, θεσπίστηκαν κάποιοι κανονισμοί για να αποτραπεί η ατμοσφαιρική ρύπανση από τα πλοία. Οι κανονισμοί αυτοί, έχουν στρέφει το ενδιαφέρον στα εναλλακτικά καύσιμα που εκπέμπουν λιγότερους ρύπους σε σύγκριση με το καύσιμα που βασίζονται στο πετρέλαιο.

Πιο συγκεκριμένα, ο Διεθνής Ναυτιλιακός Οργανισμός (IMO) αποφάσισε κατά την 70η σύνοδο της επιτροπής προστασίας του θαλάσσιου περιβάλλοντος (MEPC) τον Οκτώβριο του 2016 τη μείωση της μέγιστης περιεκτικότητας σε θείο των καυσαερίων στον αέρα από 3,5% σε 0,5% από το 2020. Η απόφαση του ΙΜΟ για περιορισμό του θείου που εμπεριέχεται στα καύσιμα των πλοίων στο 0,5%, μπήκε σε ισχύ από την 1η Ιανουαρίου 2020 σε παγκόσμιο επίπεδο. Σε συνδυασμό με την φιλοδοξία του περιορισμού των GHG (greenhouse gas gases) κατά 50% ως το 2050, τα εναλλακτικά καύσιμα παρουσιάζονται ως μονόδρομοι.

Η στροφή σε διαφορετικές πηγές ενέργειας των πλοίων αποτελεί ορόσημο για την παγκόσμια ναυτιλία. Τα τελευταία χρόνια παρατηρείται μια στροφή στην αναζήτηση εναλλακτικών πηγών ενέργειας για την πρόωση πλοίων ώστε να επιτευχθεί αποστροφή από τα ορυκτά καύσιμα και να ελαχιστοποιηθούν όσο είναι δυνατόν τα περιβαλλοντικά κόστη.

Οι νέες τεχνολογίες συμβάλλουν στην επίτευξη της βιώσιμης ανάπτυξης και προσφέρουν τεράστιες ευκαιρίες δραστικής βελτίωσης του περιβαλλοντικού προβλήματος. Έτσι, το καύσιμο LNG και η ηλεκτρική ενέργεια, επιλέχθηκαν ως δύο από τις φιλικές προς το περιβάλλον εναλλακτικές πηγές ενέργειας που μπορούν να μειώσουν τις εκπομπές τοξικών αερίων από τα πλοία.

Οι πολιτικές ατζέντες για την βιώσιμη ανάπτυξη είναι καθοριστικές προς την κατεύθυνση των εναλλακτικών μορφών καυσίμου, όπως θα δούμε παρακάτω. Τα τελευταία χρόνια παρατηρείται από την πλευρά της ναυτιλίας η χάραξη στρατηγικών για την
υιοθέτηση εναλλακτικών καυσίμων και η ανάληψη πρωτοβουλιών εναρμονισμένων με αυτά.

Θα ακολουθήσουμε τις πολιτικές ατζέντες που δρομολογούνται για την καθιέρωση της χρήσης του LNG και θα παρακολουθήσουμε πως δημιουργείται η καινοτομία στην κατασκευή της μέσα από την ανάδειξη των αλληλεπιδράσεων και συνεργειών των βασικών πρωταγωνιστών που θα διαδραματίσουν κομβικό ρόλο στην ανάπτυξη και την πορεία των αναδυόμενων τεχνολογιών, του LNG και της ηλεκτρικής ενέργειας.

Σ' αυτό το σημείο αξίζει να σημειωθεί ότι μία εναλλακτική πηγή ενέργειας δεν υπερέχει καθολικά έναντι μιας άλλης αλλά έχει να κάνει με την πτυχή που εφαρμόζεται. Υπάρχουν πολλά και διαφορετικά εναλλακτικά καύσιμα πλοίων. Η μελέτη αυτή επικεντρώνεται στα εναλλακτικά καύσιμα του LNG και της ηλεκτρικής ενέργειας που βρίσκονται στο στάδιο μελέτης υιοθέτησης τους στην Ελλάδα.

2.2 Ευρωπαϊκά Συγχρηματοδοτούμενα προγράμματα για το LNG και την ηλεκτρική ενέργεια στην Ελλάδα

Τα δύο εναλλακτικά καύσιμα που αποτελούν αντικείμενο μελέτης της συγκεκριμένης διπλωματικής υποστήριξης από ευρωπαϊκά συγχρηματοδοτούμενα προγράμματα για την καθιέρωσή τους. Οι πολιτικές ατζέντες που δρομολογούνται δίνουν τη δυνατότητα να παρακολουθήσει κάποιος πως μια καινοτομία δημιουργείται στην κατασκευή της (in the making) και να κατανοήσει τέτοιου είδους μακροπρόθεσμες κοινωνικο-τεχνικές μεταβάσεις.

Ο λόγος για το ευρωπαϊκό συγχρηματοδοτούμενο πρόγραμμα Poseidon Med II του οποίου σκοπός είναι η καθιέρωση του LNG ως ναυτιλιακό καύσιμο στην Ανατολική Μεσόγειο υλοποιώντας δράσεις στο χώρο της ενέργειας και της ναυτιλίας. Συμμετέχουν πέντε κομβικοί λιμένες (Πειραιάς, Πάτρα, Ηγουμενίτσα, Ηράκλειο, Λεμεσός) και ο τερματικός σταθμός LNG στη Ρεβυθούσα. Συμμετέχουν 3 Κράτη-Μέλη (Ελλάδα, Ιταλία, Κύπρος) και συνολικά 26 εταίροι.

Η συνεισφορά του είναι καθοριστική για την εδραίωση του LNG στην Ελλάδα και στο ευρύτερο πλαίσιο της Νοτιοανατολικής Ευρώπης, μιας και δραστηριοποιούνται πλοία που τροφοδοτούνται με LNG στην Βόρεια και Δυτική Ευρώπη. Το πρόγραμμα σχεδιάζει και πραγματοποιεί μελέτες για την εδραίωση μιας βιώσιμης και αποτελεσματικής εφοδιαστικής αλυσίδας καθώς και τη θέσπιση του κατάλληλου νομοθετικού πλαισίου ώστε να υιοθετηθεί.
το LNG ως μια εμπορικά αποδοτική λύση. Συγχρηματοδοτείται από τον μηχανισμό «Connecting Europe Facility» της Ευρωπαϊκής Ένωσης.

Εικόνα 2.1: Το πρόγραμμα Poseidon Med II

Επιπρόσθετα, η χάραξη ενός σύγχρονου θεσμικού πλαισίου για τη χρήση του ηλεκτρισμού ως ενός βιώσιμου εναλλακτικού καύσιμου, έρχεται μέσω του ευρωπαϊκού προγράμματος ELEMED (Electrification in the Eastern Mediterranean). Το Elemen προωθεί τη χρήση της ηλεκτρικής ενέργειας ως ναυτιλιακό καύσιμο, προετοιμάζει το έδαφος για την εισαγωγή του cold ironing καί των υβριδικών πλοίων σε ολόκληρο το διάδρομο της Ανατολικής Μεσογείου. Σε αυτή τη προσπάθεια να μειωθεί το περιβαλλοντικό αποτύπωμα της ναυτιλίας στην ανατολική μεσόγειο συμμετέχουν 3 Κράτη –Μέλη (Ελλάδα, Κύπρο, Σλοβενία) και συμμετέχουν συνολικά 10 εταίροι. Το πρόγραμμα αφορά την ανάπτυξη ενός θεσμικού πλαισίου που θα υποστηρίζει την τεχνολογία ηλεκτροδότησης εντός των λιμένων και η διάθεση της ηλεκτρικής ενέργειας μελετάται σε τέσσερα λιμάνια (Κόπερ, Κυλήνη, Πειραιάς, Λεμεσός). Το συγκεκριμένο πρόγραμμα εισάγει την έννοια του αειφόρου πλοίου και συγχρηματοδοτείται επίσης από τον μηχανισμό «Connecting Europe Facility».
Εικόνα 2.2: το πρόγραμμα Elemed

2.2.1 Το LNG (Υγροποιημένο φυσικό αέριο) ως εναλλακτικό καύσιμο

Η εισαγωγή του υγροποιημένου φυσικού αερίου (LNG) θεωρείται ως η βέλτιστη λύση για την μείωση των εκπομπών ρύπων που ήρθε για να αντικαταστήσει σταδιακά τα συμβατικά καύσιμα. Είναι ένα πολλά υποσχόμενο καύσιμο καθώς μειώνει με μεγάλη διαφορά τις εκπομπές αερίων, όπως φαίνεται στην εικόνα 2.3.

Εικόνα 2.3: Το LNG μειώνει τους ρύπους κατά 21%

Αναλυτικά, το υγροποιημένο φυσικό αέριο μηδενίζει σχεδόν τις εκπομπές θείου, μειώνει κατά 95% τα οξείδια του αζώτου και περίπου 25% το διοξείδιο του άνθρακα.
Εικόνα 2.4: Το LNG μειώνει τις επιβλαβείς εκπομπές αερίων

Εικόνα 2.5: Τα πλοία που τροφοδοτούνται με LNG παγκοσμίως

Πηγή: (DNV-GL, 2018)
Το κύριο μειονέκτημα των εναλλακτικών καυσίμων είναι ο ανεφοδιασμός τους, αλλά για το LNG έχει βελτιωθεί πολύ ο ανεφοδιασμός του. Το σύστημα του υγροποιημένου φυσικού αερίου δεν έχει εγκατασταθεί πλήρως, αλλά τα σχετικά projects και μελέτες για το σύστημα έχει ολοκληρωθεί και είναι εγκεκριμένο από τους νηογνώμονες. Ο ανεφοδιασμός μπορεί να γίνει με διάφορους τρόπους, όπως απεικονίζεται στην παρακάτω εικόνα.

Εικόνα 2.6: Εναλλακτικές λύσεις ανεφοδιασμού του ναυτιλιακού καυσίμου LNG

(Πηγή: Danish Maritime Authority, 2012)

Σχεδόν όλες οι μελέτες προσδιορίζονται από τρεις διαφορετικούς τρόπους ανεφοδιασμού καυσίμου LNG. Οι τρεις λύσεις ανεφοδιασμού καυσίμου LNG, φαίνεται στην εικόνα 3.5. Ο πρώτος τρόπος είναι από πλοίο σε πλοίο (STS), που είναι η μεταφορά υγροποιημένου φυσικού αερίου από το ένα πλοίο στο άλλο πλοίο. Ο ανεφοδιασμός καυσίμου STS είναι μια κατάλληλη μέθοδος για τα πλοία που έχουν όγκους δεξαμενών (καυσίμων) με ή άνω των 100 m^3 LNG (ουσιαστικά όλα τα θαλάσσια σκάφη) (Faber J., et al., 2015). Η δεύτερη εναλλακτική λύση για τον ανεφοδιασμό καυσίμων είναι από φορτηγό σε πλοίο (TTS) ο οποίος είναι ένας εύκολος τρόπος για την οδική μεταφορά και το ύψιστο γέμισμα στο λιμάνι από ένα φορτηγό. Όμως μια δεξαμενή δεν μπορεί να καλυφθεί έως το μέγιστο. Τέλος, η τρίτη εναλλακτική λύση για τον ανεφοδιασμό καυσίμων είναι απευθείας από τον τερματικό / μια δεξαμενή αποθήκευσης στην ξηρά προς το πλοίο μέσω ενός

1 Στην αγγλική βιβλιογραφία συναντάται ως Ship-to-Ship
2 Στην αγγλική βιβλιογραφία συναντάται ως Truck-to-Ship
αγωγού³ (TPS). Η τρίτη επιλογή σε σχέση με την δεύτερη έχει το πλεονέκτημα ότι μπορούν να ανεφοδιαστούν μεγαλύτερες ποσότητες LNG. Υπάρχουν και μελέτες όμως που θεωρούν μια άλλη λύση τις κινητές δεξαμενές. (Vizcayno, 2016, Wurster et al., 2014).

Υπάρχουν 67 θέσεις ανεφοδιασμού LNG σε λειτουργία, 26 άλλες τοποθεσίες έχουν δηλωθεί και άλλες 38 βρίσκονται υπό συζήτηση (DNV GL, 2018). Η εικόνα 2.7 δείχνει λεπτομερείς πληροφορίες σχετικά με τις εγκαταστάσεις τροφοδοσίας του LNG.

Εικόνα 2.7: Οι εγκαταστάσεις τροφοδοσίας του καυσίμου LNG

Πηγή: (DNV GL, 2018)

Οι περισσότερες εγκαταστάσεις ανεφοδιασμού συναντώνται στην Ευρώπη, όπως φαίνεται στον παρακάτω χάρτη.

Εικόνα 2.8: Η Νορβηγία κατέχει τις περισσότερες εγκαταστάσεις ανεφοδιασμού

³ Στην αγγλική βιβλιογραφία συναντάται ως terminal to ship via pipeline
Τα πλοία που τροφοδοτούνται με LNG χρησιμοποιούν το LNG ως μοναδικό καύσιμο ή σαν διπλό καύσιμο με τα συμβατικά καύσιμα πλοίων. Οι κινητήρες που μπορούν να χρησιμοποιηθούν με τη χρήση του LNG, απεικονίζονται στην εικόνα 2.9.

Εικόνα 2.9: Οι κινητήρες που χρησιμοποιούνται στην χρήση του LNG
Πηγή: Wurster et al., 2014

Το υγροποιημένο φυσικό αέριο έρχεται στην Ελλάδα ως ναυτιλιακό καύσιμο μέσα από πολιτικές ατζέντες, όμως για την καθιέρωση της χρήσης του καλό θα ήταν να δημιουργηθούν κίνητρα.

2.2.2 Η Ηλεκτρική Ενέργεια ως καύσιμο

Η χρήση της ηλεκτρικής ενέργειας ως εναλλακτικού καυσίμου για τα πλοία είναι το επόμενο μεγάλο στοίχημα για την παγκόσμια ναυτιλιακή βιομηχανία. Η ηλεκτρική ενέργεια ως ναυτιλιακό καύσιμο εισάγει την έννοια του αειφόρου πλοίου. Η χρήση ηλεκτρικής ενέργειας που θα προέρχεται από ανανεώσιμες πηγές, τόσο για την κίνηση των πλοίων όσο και για την ηλεκτροδότησή τους στα λιμάνια, αποτελεί μια πολύ καλή λύση για την επίτευξη του στόχου των μηδενικών εκπομπών ρύπων στη ναυτιλία. Οι πρόσφατες εξελίξεις στην ηλεκτροκίνηση των πλοίων ενέχουν προοπτικές για την αποτελεσματικότερη χρήση της ενέργειας.

Η παραγωγή ηλεκτρικής ενέργειας μπορεί να αξιοποιηθεί για την παραγωγή ηλεκτρισμού, προκειμένου να φορτιστούν οι μπαταρίες για πλήρως ηλεκτρικά πλοία. Η ηλεκτρική ενέργεια πιθανότατα θα χρησιμοποιείται όλο και περισσότερο για τη φόρτιση των μπαταριών για τη λειτουργία των πλοίων στα λιμάνια, αλλά και για την πρόωση. Η ενίσχυση του ρόλου της ηλεκτρικής ενέργειας στα πλοία θα συμβάλει στη βελτίωση της ενεργειακής αποδοτικότητας των καυσίμων σε μεγαλύτερα πλοία.

Πρόκειται για την ταχύτερα αναπτυσσόμενη τεχνολογία στη ναυτιλία και εμφανίστηκε μέσα από το ευρωπαϊκό πρόγραμμα Electrification in the Eastern Mediterranean- (Elemed) και στην Ελλάδα. Η Ελλάδα αποτελεί ιδανικό πεδίο εφαρμογής την Ελλάδα. Ανοίγει νέες προοπτικές με σημαντικά περιβαλλοντικά, κοινωνικά και οικονομικά οφέλη για τα ελληνικά λιμάνια, ενισχύοντας την νησιωτική και τη βιωσιμότητα των θαλάσσιων μεταφορών.

Η παραγωγή ηλεκτρικής ενέργειας μπορεί να αξιοποιηθεί για την παραγωγή ηλεκτρισμού, προκειμένου να τροφοδοτηθεί ένα πλοίο στο λιμάνι με την διαδικασία του cold ironing. To cold ironing (ή υπεράκτια τροφοδοσία (OPS) ή παράκτια ηλεκτρική ενέργεια (SSE)) είναι η διαδικασία των πλοίων που συνδέονται με ηλεκτρικό ρεύμα με την ακτή. Έχει αποδειχθεί ότι είναι αποτελεσματική στην μείωση των εκπομπών που
συμβάλλουν στην ατμοσφαιρική ρύπανση και την κλιματική αλλαγή σε χώρες με υψηλή συγκέντρωση ανανεώσιμης ενέργειας.

Σύμφωνα με το WPCI (2017), υπάρχουν μόνο 28 λιμάνια στον κόσμο με εγκατεστημένο cold ironing. Με εξαίρεση το Μπέργκεν, όλα είναι μεγάλα λιμάνια με υψηλή συνολική ζήτηση ενέργειας. Είναι σημαντικό να τονιστεί όμως πως τα έργα αυτά έχουν ολοκληρωθεί με εξωτερική υποστήριξη στις χώρες που είχαν φιλόδοξους περιβαλλοντικούς στόχους.

Оι εκ τούτου, είναι απαραίτητο για τη ναυτιλιακή βιομηχανία επικεντρωθεί στη μείωση των εκπομπών από τη ναυτιλία σε μια προσπάθεια μείωσης του αντίκτυπου του τομέα στην ατμοσφαιρική ρύπανση.

48
ΚΕΦΑΛΑΙΟ 3ο ΕΡΕΥΝΗΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

3.1 Μεθοδολογία Έρευνας

Στην συγκεκριμένη ενότητα, θα εξηγηθεί το γιατί επιλέχθηκε ο συγκεκριμένος σχεδιασμός στην διπλωματική εργασία. Λαμβάνοντας υπόψη το ερευνητικό ερώτημα και τους στόχους που έχουν τεθεί, χρησιμοποιήθηκε η ποσοτική μέθοδος. Η ποσοτική έρευνα που πραγματοποιήθηκε στοχεύει να εξάγει χρήσιμα συμπεράσματα όσο αφορά την πρόθεση χρήσης των εναλλακτικών καυσίμων LNG και ηλεκτρισμού στην Ελλάδα.

Για να επιτευχθεί ο σκοπός της έρευνας, έπρεπε να εφαρμοστεί ένα αξιόπιστο μοντέλο που θα χρησιμοποιούνταν εργαλειακά για να μπορέσουμε να μετρήσουμε την συμπεριφορική πρόθεση χρήσης των δύο τεχνολογιών από τα ενδιαφερόμενα μέρη (stakeholders). Εφόσον μελετήθηκαν θεωρίες και μοντέλα για την αποδοχή της τεχνολογίας, καταλήξαμε στο να δημιουργηθεί ένα ενοποιημένο μοντέλο που να ενσωματώνει τα χαρακτηριστικά της Διάχυσης της Καινοτομίας στο Μοντέλο Αποδοχής της Τεχνολογίας.

Το Μοντέλο Αποδοχής της Τεχνολογίας όπως είδαμε στο θεωρητικό πλαίσιο είναι το πιο διαδεδομένο και ευρέως εφαρμοσμένο μοντέλο για την μέτρηση αποδοχής μιας τεχνολογίας. Η θεωρία Διάχυσης της Καινοτομίας επιλέχθηκε γιατί τα πέντε χαρακτηριστικά της καινοτομίας που προσβλέπει η συγκεκριμένη θεωρία είναι καταλληλά για το αντικείμενο μελέτης της διπλωματικής εργασίας καθώς πρόκειται για δύο καινοτόμες τεχνολογίες στο πλαίσιο της Ελλάδας.

Για να γίνει ακόμα πιο αξιόπιστο και δυνατό το ερευνητικό μοντέλο, ενσωματώθηκαν εξωτερικές μεταβλητές οι οποίες χαρακτηρίζουν τα δύο εναλλακτικά καύσιμα. Για να κατανοηθεί το πώς η κοινωνία μπορεί να ωφεληθεί από την καινοτομία, πρέπει επίσης να κατανοηθούν οι διαδικασίες της καινοτομίας και το πώς αυτές αλληλεπιδρούν με ευρύτερους κοινωνικούς, θεσμικούς, και πολιτικούς παράγοντες (Fagerberg, Martin, et al., 2013).

Για να καθοριστούν αυτοί οι παράγοντες που αντικατοπτρίζουν τα ζητήματα γύρω από το LNG και την ηλεκτρική ενέργεια, πραγματοποιήθηκε συστηματική συλλογή επιστημονικών μελετών και πρωτογενείς πηγές τόσο για το LNG όσο και για την ηλεκτρική ενέργεια, προκειμένου να αξιολογηθούν τα κυριότερα ζητήματα που περιλαμβάνει η ανάπτυξή τους στην Ελλάδα. Δεδομένου πως οι συγκεκριμένες τεχνολογίες βρίσκονται σε
φάση μελετών και σε πρώιμο στάδιο ανάπτυξης, χρησιμοποιήθηκε διεθνής βιβλιογραφία. Όλοι οι παράγοντες συνδέονται μεταξύ τους γιατί έτσι είναι η φύση της διαδικασίας της καινοτομίας και περιλαμβάνουν κοινωνικές, πολιτικές, οικονομικές και τεχνικές πτυχές.

Το εννοιολογικό πλαίσιο που αναπτύσσεται στην συγκεκριμένη έρευνα θα βοηθήσει σε μια καλύτερη κατανόηση σχετικά με την πρόθεση χρήσης των δύο τεχνολογιών από τους εμπλεκόμενους φορείς της ελληνικής ναυτιλιακής βιομηχανίας, ποιοι είναι οι παράγοντες που συμβάλλουν στην χρήση τους αλλά και ποιοι είναι οι παράγοντες που πιθανόν δυσχεραίνουν τον δρόμο προς την υιοθέτηση και χρήση τους. Το συγκεκριμένο υβριδικό μοντέλο θα προσφέρει ένα αξιολόγητο διεπιστημονικό πλαίσιο και ένα υπόβαθρο να αναλύσουν και να αξιολογήσουν οι παράγοντες που επηρέαζουν την τεχνολογική μετάβαση προς την αειφορία.

Τη συνέχεια, δημιουργήθηκε το ερωτηματολόγιο το οποίο θα επιφέρει έγκυρα και αξιόπιστα πορίσματα με τη συλλογή και στατιστική επεξεργασία των δεδομένων. Για την δημιουργία του ερωτηματολογίου ακολουθήθηκαν οι οδηγίες, οι οποίες υπάρχουν στη διεθνή βιβλιογραφία σχετικές με την υλοποίηση διαδικτυακών ερωτηματολογίων (Lumsden, 2007). Το ερωτηματολόγιο παρείχε όλες τις απαιτούμενες πληροφορίες που χρειάζονται για τον σκοπό της έρευνας και ήταν ανώνυμο προκειμένου να διασφαλίσει η καλύτερη δυνατή ανταπόκριση και ειλικρίνεια των απαντήσεων.

Μετά την συλλογή των δεδομένων, πραγματοποιήθηκε η εξαγωγή συσχετίσεων όλων των ομαδοποιημένων μεταβλητών προς τους δύο παράγοντες ελέγχου και έπειτα, όπου σημειώθηκε σημαντική συσχέτιση, αναλύθηκαν όλες οι ερωτήσεις της ομαδοποιημένης μεταβλητής για πιο αναλυτικά συμπεράσματα και με τη χρήση γραφικών αναπαραστάσεων, συνέβαλλαν στην ερμηνεία των δεδομένων τα οποία συλλέχθηκαν.

3.2 Σχεδιασμός Έρευνας

Ένας ερευνητικός σχεδιασμός μπορεί να οριστεί ως το πλαίσιο για τον τρόπο συλλογής και ανάλυσης δεδομένων. Ένας ερευνητικός σχεδιασμός σχετίζεται με τα κριτήρια που χρησιμοποιούνται κατά την αξιολόγηση της έρευνας. Είναι επομένως ένα πλαίσιο για τη
δημιουργία δεδομένων που ταιριάζουν τόσο σε ένα ορισμένο σύνολο κριτηρίων όσο και στο ερευνητικό ζήτημα το οποίο διερευνάται.

Ο ερευνητικός σχεδιασμός αντικατοπτρίζει την ακολουθία που δίνεται σε μια σειρά διαστάσεων της ερευνητικής διάδικασίας. Οι διαστάσεις στην συγκεκριμένα έρευνα περιλαμβάνουν τις αιτιώδεις συνδέσεις μεταξύ των μεταβλητών στο ερευνητικό μοντέλο καθώς την κατανόηση και την ερμηνεία της συμπεριφοράς των χρηστών στο συγκεκριμένο κοινωνικό πλαίσιο. Ο ερευνητικός σχεδιασμός συνεπώς είναι στενά συνδεδεμένος με την ερευνητική στρατηγική, καθώς η επιλογή του ενός επηρεάζει τον άλλον (Bryman, 2004).

Το ενοποιημένο μοντέλο αυτής της έρευνας βασίζεται στο Μοντέλο Αποδοχής της Τεχνολογίας (Technology Acceptance Model - TAM) που παρουσιάστηκε από τον Davis, προσαρμοσμένο με τα πέντε (5) κατασκευάσματα της Θεωρίας Διάχυσης της Καινοτομίας του Rogers. Επιπλέον, προστέθηκαν νέες μεταβλητές-παράγοντες που επηρεάζουν τη χρήση των εναλλακτικών καυσίμων, συγκεκριμένα του LNG και της ηλεκτρικής ενέργειας.

Οι παράγοντες αυτοί προέκυψαν μέσα από την συστηματική βιβλιογραφική ανασκόπηση σε διεθνές επίπεδο καθώς δεν υφίσταται χρήση τους αυτή τη στιγμή στην Ελλάδα. Για την επίτευξη του στόχου αυτού, πραγματοποιήθηκε αναζήτηση επιστημονικών άρθρων σχετικά με την χρήση των εναλλακτικών καυσίμων, συγκεκριμένα του LNG και της ηλεκτρικής ενέργειας με δεδομένα που θα μπορούσαν να φανούν χρήσιμα για τη συγκεκριμένη έρευνα.

Τότε, μετά τη μελέτη των δεδομένων που συγκεντρώθηκαν από την βιβλιογραφική ανασκόπηση, πραγματοποιήθηκε η αναζήτηση επιστημονικών αρθρων για να επιτευχθεί η επιτυχία της επιστημονικής συμπεριφοράς των τεχνολογιών που υπάγονται στο LNG και της Ηλεκτρικής Ενέργειας. Αυτές οι μεταβλητές έχουν εντοπιστεί και καταγραφείσ μέσα από αρκετές μελέτες για την καλύτερη κατανόηση του πώς κάθε μεταβλητή μπορεί να επηρεάζει έναν χρήστη να υιοθετήσει μια τεχνολογία. Σε αυτό το σημείο είναι σημαντικό να διευκρινιστεί πως εφόσον δεν υπάρχει παρόμοια μελέτη, οι μεταβλητές δεν βασίστηκαν σε προηγούμενες μελέτες αλλά για πρώτη φορά εντοπίστηκαν και συγκροτήθηκαν οι παράγοντες που επηρεάζουν τη χρήση των δύο τεχνολογιών προσαρμοσμένοι στα δύο θεωρητικά μοντέλα.

Ο σκοπός της πρώτης αυτής έρευνας, είναι να διερευνήσει την ετοιμότητα των εμπλεκόμενων μερών (stakeholders) να χρησιμοποιήσουν τα εναλλακτικά καύσιμα, LNG
και ηλεκτρική ενέργεια. Επειδή οι συγκεκριμένες τεχνολογίες βρίσκονται σε πρώιμη φάση ανάπτυξης, δεν μπορεί κανείς να μετρήσει άμεσα συμπεριφορές καταναλωτών. Μπορούμε, ωστόσο, να μετρήσουμε τη συμπεριφορική πρόθεση των δυνητικών χρηστών που θα υιοθετήσουν τέτοιου είδους τεχνολογίες, ώστε να επιτευχθεί η πρόβλεψη της πραγματικής χρήσης. Έχει μεγάλη αξία η απόκτηση μιας εις βάθος κατανόησης των οδηγών-παραγόντων που συνδέονται με την αποδοχή ή απόρριψη αυτών των τεχνολογιών πριν τη χρήση καθώς και η διαδικασία υιοθέτησής τους.

Η προσθήκη αυτών των εννέα (9) μεταβλητών που αφορούν και τις δύο τεχνολογίες στο ενοποιημένο ερευνητικό μοντέλο, συμβάλλει στην καλύτερη κατανόηση των δύο συγκεκριμένων ναυτιλιακών καυσίμων στην Ελλάδα. Σε σπουδήστε νέα τεχνολογία, υπάρχουν πολλές μεταβλητές που επηρεάζουν τη διαδικασία λήψης αποφάσεων των χρηστών σχετικά με το πώς, πότε και ποιοι παράγοντες θα συμβάλλουν στο να χρησιμοποιήσουν μια τεχνολογία. Έτσι, αυτή η μελέτη διερευνά ποιοι παράγοντες συμβάλλουν στη χρήση του LNG και της ηλεκτρικής ενέργειας.

Επομένως, με βάση τα κατασκευάσματα των δύο θεωρητικών μοντέλων και τις εξωτερικές μεταβλητές που βασίστηκαν στα δύο ναυτιλιακά καύσιμα των LNG και της ηλεκτρικής ενέργειας, αναπτύχθηκε ένα υβριδικό μοντέλο. Το συγκεκριμένο ερευνητικό μοντέλο θα δοκιμαστεί και θα αναλυθεί παρακάτω. Για την υλοποίηση της παρούσας υλοποίησης χρησιμοποιήθηκε η μέθοδος του ερωτηματολογίου.

3.3 Ανάπτυξη Ερωτηματολογίου-Συλλογή Δεδομένων

Το ερωτηματολόγιο προωθήθηκε με email σε νηογνώμονες, ναυτιλιακές εταιρίες και οργανισμούς συναφείς με την ναυτιλία. Στο ερωτηματολόγιο που διατέθηκε online, όλες οι ερωτήσεις ήταν υποχρεωτικές και οι συμμετέχοντες για να το υποβάλουν έπρεπε να είχαν συμπλήρωσε όλες τις απαντήσεις. Αυτό είχε ως αποτέλεσμα η κάθε έρευνα να είναι ολοκληρωμένη και πλήρης. Η έρευνα διήρκεσε 50 μέρες από 12 Σεπτεμβρίου 2019 έως 31 Οκτωβρίου 2019. Το δείγμα που συγκεντρώθηκε είναι 50 άτομα.

Για την δημιουργία του ερωτηματολογίου, χρησιμοποιήθηκε η υπηρεσία της Google Drive (Forms). Στη συνέχεια, αφού συγκεντρώθηκαν οι υποβολές κατά τη χρονική περίοδο της
έρευνας, ξεκίνησε η δημιουργία μιας κοινής βάσης δεδομένων με τη χρήση του προγράμματος Microsoft ®Excel 2016, το οποίο χρησιμοποιήθηκε για την επεξεργασία των δεδομένων στο στατιστικό πακέτο SPSS 20.

Στο ερωτηματολόγιο συμπεριλήφθηκαν δύο βασικοί τύποι ερωτήσεων: οι ερωτήσεις πολλαπλής επιλογής στο Ι μέρος που αφορά τα δημογραφικά στοιχεία και στις ερωτήσεις με βάση την κλίμακα Likert που χρησιμοποιήθηκαν στο δεύτερο και τρίτο μέρος του ερωτηματολογίου. Όλα τα κατασκευάσματα μετρήθηκαν σε κλίμακες τύπου Likert πέντε (5) σημείων, από 1 =διαφωνώ έντονα με το 5 = συμφωνώ απόλυτα.

Για να μετρηθεί η εγκυρότητα και η αξιοπιστία του ερωτηματολογίου, πραγματοποιήθηκε μια έρευνα σε 50 τυχαία επιλεγμένους stakeholders στην ναυτιλιακή βιομηχανία στην Ελλάδα. Η εγκυρότητα του ερωτηματολογίου επιβεβαίωθηκε καθώς καμία αλλαγή δεν κρίθηκε απαραίτητη στα στοιχεία του εργαλείου. Ο συντελεστής αξιοπιστίας (Cronbach Alpha) για τα συνολικά στοιχεία του ερωτηματολογίου κυμαίνεται 0,869, το οποίο ξεπερνά το προτεινόμενο ικανοποιητικό επίπεδο του 0,70 που υποδείκνυε την υψηλή του αξιοπιστία, όπως ορίζεται από τους Nunnally (1978) και τους Hair J. et al. (2007).

Το ερωτηματολόγιο καλύπτει τις διαστάσεις και την υπόθεση της μελέτης και είναι σχεδιασμένο ώστε να συλλέγει τα απαιτούμενα δεδομένα για την εξέταση των υποθέσεων και την εξαγωγή συμπερασμάτων. Το σύνολο των ερωτήσεων του ερωτηματολογίου είναι εβδομήντα ένα (71) (βλ. Παράρτημα II). Το ερωτηματολόγιο αποτελείται από τρία μέρη.

Το Μέρος I σχεδιάστηκε για να προσδιορίσει τα δημογραφικά χαρακτηριστικά των ερωτηθέντων. Χρησιμοποιήθηκαν τέσσερα στοιχεία για τη συλλογή πληροφοριών δημογραφικών στοιχείων. Περιείχε δημογραφικά στοιχεία που περιλάμβαναν το φύλο, την ηλικία, το επίπεδο σπουδών καθώς και τον τομέα της ναυτιλίας στον οποίο απασχολούνται.

Το δεύτερο (ΙΙ) Μέρος αποτελείται από ομαδοποιημένες ερωτήσεις οι οποίες εξατάζουν διαφορετικές παραμέτρους με βάση τις μεταβλητές που χαρακτηρίζουν τα δύο θεωρητικά μοντέλα και με επιπρόσθετες επιλεγμένες κατασκευές που ταιριάζουν στις συγκεκριμένες τεχνολογίες. Οι ερωτήσεις έγιναν με βάση τους στόχους της μελέτης καθώς δεν υπήρχε προηγούμενη μελέτη να βασιστεί στην ανασκόπηση της βιβλιογραφίας.

Ειδικότερα, το δεύτερο μέρος του ερωτηματολογίου αποτελείται από τρεις υποενότητες. Η πρώτη περιλαμβάνει ερωτήσεις σύμφωνα με τα πέντε (5) κατασκευάσματα της Θεωρίας Διάχυσης της Καινοτομίας, το Σχετικό Πλεονέκτημα, την Συμβατότητα, την Πολυπλοκότητα, την Δοκιμασία και την παρατηρητικότητα. Η δεύτερη υποενότητα
περιλαμβάνει ερωτήσεις με τους εξωτερικούς παράγοντες που επηρεάζουν στην πρόθεση χρήσης των LNG και της ηλεκτρικής ενέργειας. Τέλος, στο τέλος προστέθηκαν ερωτήσεις γύρω από τους δύο καθοριστικούς παράγοντες του μοντέλου Αποδοχής της Τεχνολογίας (TAM) και γι' αυτό τον λόγο από τις συνολικά 14 μεταβλητές προκύπτουν 16 υποθέσεις μαζί με την προσθήκη.

Τα ερωτήματα στο τρίτο (III) μέρος του ερωτηματολογίου αναπτύχθηκαν από τον ερευνητή για να μετρήσει τη στάση ως προς την Καινοτομικότητα από τα ενδιαφερόμενα μέρη (stakeholders) ως παράγοντας Κοινωνικής επιρροής προς την πρόθεση χρήσης του LNG και της ηλεκτρικής ενέργειας ως καινοτόμα ναυτιλιακά καύσιμα στην Ελλάδα.

3.4 Δειγματοληψία

Το εννοιολογικό πρότυπο που αναπτύχθηκε, στοχεύει να αποτελέσει αξιόπιστο εργαλείο μέτρησης του επιπέδου αποδοχής μεταξύ των δυνητικών χρηστών των εναλλακτικών καυσίμων του LNG και της ηλεκτρικής ενέργειας. Κατά συνέπεια, η έρευνα στοχεύει στους ανθρώπους που απασχολούνται στον ναυτιλιακό τομέα στην Ελλάδα και το κριτήριο συμπερίληψης για τους συμμετέχοντες ήταν ότι έπρεπε να είναι γνώστες του αντικειμένου που εξετάζει η συγκεκριμένη εργασία εφόσον πρόκειται για αναδυόμενες καινοτόμες τεχνολογίες.

Αυτό το κριτήριο φάνηκε στο αποτέλεσμα καθώς οι πείσατοροι από τους συμμετέχοντες ήταν εκείνοι που είναι πιθανότερο να αλληλοεπιδράσουν με την μετάβαση σε πιο φιλικά προς το περιβάλλον ναυτιλιακά καύσιμα όπως είναι οι εφοπλιστές και οι ναυτιλιακές εταιρείες αλλά και οι νηογνώμονες οι οποίοι ασχολούνται με το νομοθετικό πλαίσιο και ζητήματα ασφάλειας σχετικά με τις καινούργιες αυτές τεχνολογίες.
3.5 Ερευνητικό μοντέλο

Η έρευνα αυτή προτείνει ένα ενοποιημένο μοντέλο που βασίζεται στο μοντέλο Αποδοχής της Τεχνολογίας (TAM) ενσωματωμένο με την Θεωρία Διάχυσης της Τεχνολογίας για να επωφεληθεί από αυτά τα δύο θεωρητικά μοντέλα. Οι δύο βασικοί παράγοντες του μοντέλου Αποδοχής της Τεχνολογίας (TAM), η Αντιλαμβανόμενη Χρησιμότητα (Perceived Usefulness- PU) και η Αντιλαμβανόμενη Ευκολία Χρήσης (Perceived Ease of Use-PEU) χρησιμοποιούνται σαν τους δύο καθοριστικούς παράγοντες που επηρεάζουν την πρόθεση (Intention) χρήσης των δύο τεχνολογιών.

Στη συγκεκριμένη μελέτη, προτείνεται ένα σύνθετο μοντέλο στο οποίο ενσωματώνονται τα πέντε κατασκευάσματα της Θεωρίας Διάχυσης της Τεχνολογίας που είναι το σχετικό πλεονέκτημα, η συμβατότητα, η πολυπλοκότητα, η δοκιμασία και η παρατηρητικότητα. Επιπλέον, προστίθενται πολλαπλές μεταβλητές που αντικατοπτρίζουν τους παράγοντες αποδοχής της χρήσης των δύο ναυτιλιακών καυσίμων, του LNG και της ηλεκτρικής ενέργειας. Οι μεταβλητές καλύπτουν οικονομικές, τεχνικές, περιβαλλοντικές και κοινωνικές πτυχές όπως φαίνεται στο παρακάτω σχήμα.

Το υβριδικό μοντέλο που αναπτύχθηκε, όπως φαίνεται στο παρακάτω σχήμα, υποστηρίζει ότι τα πέντε κανονισμούς χαρακτηριστικά και οι βασικότεροι παράγοντες που επηρεάζουν το LNG και την ηλεκτρική ενέργεια ασκούν σημαντική επίδραση στην χρήση των δύο εναλλακτικών καυσίμων. Συγκεκριμένα, εξετάζουμε την επίδραση της αντιληπτής χρησιμότητας, της αντιληπτής ευκολίας χρήσης, της αντιληπτής ευκολίας και κατά συνέπεια στην πρόθεση χρήσης αυτών των εναλλακτικών καυσίμων. Συγκεκριμένα, εξετάζουμε την επίδραση της αντιληπτής χρησιμότητας, της αντιληπτής ευκολίας χρήσης των δύο εναλλακτικών καυσίμων στην Ελλάδα.
Σχήμα 3.1 Προτεινόμενο μοντέλο έρευνας

Το υβριδικό μοντέλο της συγκεκριμένης μελέτης αντιπροσωπεύει ένα θεωρητικό ενοποιημένο μοντέλο που θα δοκιμαστεί και θα αναλυθεί. Τα βέλη που συνδέουν τα κατασκευάσματα (λανθάνουσες μεταβλητές) προσδιορίζουν τις υποθετικές αιτιώδεις σχέσεις προς την κατεύθυνση των βέλων. Όπως βλέπουμε στο παραπάνω σχήμα, το μοντέλο μας αποτελείται από δεκατέσσερις (14) μεταβλητές, οι ορισμοί των οποίων περιγράφονται παρακάτω, στην ενότητα των ερευνητικών υποθέσεων. Το μοντέλο αυτό θα αποκαλύψει τον τρόπο με τον οποίο οι διάφοροι αυτοί παράγοντες επηρεάζουν την αποδοχή και κατά συνέπεια την υιοθέτηση της τεχνολογίας LNG και ηλεκτρικής ενέργειας στη ναυτιλιακή βιομηχανία στην Ελλάδα. Η ισχύς και η εφαρμοσιμότητα του προτεινόμενου μοντέλου θα δοκιμαστεί με βάση τις ακόλουθες υποθέσεις.
3.6 Ερευνητικές Υποθέσεις

Στο σημείο αυτό, μετά από εκτενή ανάλυση του ερευνητικού μας μοντέλου, θα σταθούμε στην διατύπωση των ερευνητικών μας υποθέσεων, μέσω της παρουσίασης των 14 μεταβλητών της έρευνάς μας. Οι υποθέσεις που διατυπώθηκαν βασίστηκαν στην θεώρηση ότι οι παραπάνω παράγοντες επηρεάζουν τους δύο καθοριστικούς παράγοντες του μοντέλου TAM που οδηγούν με τη σειρά τους στην στάση των εμπλεκόμενων μερών (stakeholders) απέναντι στα δύο εναλλακτικά ναυτιλιακά καύσιμα. Ο έλεγχος αυτών των υποθέσεων όπως είδαμε, πραγματοποιήθηκε με τη χρήση ερωτηματολογίου, σε ένα δείγμα χρηστών της ναυτιλιακής βιομηχανίας στην Ελλάδα.

Σχετικά πλεονεκτήματα (RAD)

Το σχετικό πλεονέκτημα ορίζεται ως ο βαθμός στον οποίο η καινοτομία θεωρείται καλύτερη από την ιδέα που αντικατέστησε. Η έρευνα έχει δείξει ότι τα αντιληπτά σχετικά πλεονεκτήματα είχαν θετικό αντίκτυπο στην πρόθεση των χρηστών να χρησιμοποιήσουν το σύστημα σε διάφορους συμμετέχοντες (Shih, 2007). Αντιλαμβανόμενοι τα μεγαλύτερα σχετικά οφέλη, οι χρήστες έχουν δεί ένα υψηλότερο επίπεδο χρησιμότητας του συστήματος. Έχει βρεθεί ότι αυτή τη δομή είναι προφανής και έχει δείξει άμεσο αντίκτυπο στην πρόθεση συμπεριφοράς των μελλοντικών χρηστών και έχει υιοθετηθεί. Υποθέσαμε ως εξής:

H1-1: Τα σχετικά πλεονεκτήματα είχαν θετική επίδραση στην PU των εναλλακτικών καύσιμων.

H1-2: Τα σχετικά πλεονεκτήματα είχαν θετική επίδραση στην PEU των εναλλακτικών καύσιμων.

Συμβατότητα (CPT)

Η συμβατότητα σχετίζεται με το βαθμό στον οποίο η καινοτομία θεωρείται συμβατή με τις τρέχουσες αξίες, την προηγούμενη εμπειρία και τις ανάγκες των μελλοντικών τελικών χρηστών. Προηγούμενες μελέτες έχουν αποδείξει ότι η συμβατότητα και η πρόθεση συμπεριφοράς έχουν σημαντικό θετικό και άμεσο αντίκτυπο στην PU (Chau και Hu (2001), Wu και Wang (2005) και Chang και Tung (2008)). Σημείωσαν ότι η έκταση της προηγούμενης εμπειρίας με συγκρίσεις τεχνικές ήταν θετικά συνδεδεμένη με μια εύκολη στη χρήση αντίληψη στην τεχνολογική καινοτομία. Οι Agarwal και η Prasad (Agarwal, R.,
& Prasad, J. 1999) διατηρούν μια θετική σχέση μεταξύ των προηγούμενων συμβατών εμπειριών του χρήστη και της υιοθέτησης της νέας τεχνολογίας. Προτάθηκαν οι ακόλουθες υποθέσεις:

H2-1: Η συμβατότητα είχε θετική επίδραση στην PU των εναλλακτικών καυσίμων.
H2-2: Η συμβατότητα είχε θετική επίδραση στην PEU των εναλλακτικών καυσίμων.

Πολυπλοκότητα (CPX)

Η πολυπλοκότητα είναι το αντίληπτο επίπεδο δυσκολίας των τελικών χρηστών στην κατανόηση των καινοτομιών και της ευκολίας χρήσης τους. Οι εμπειρικές μελέτες έχουν δείξει ότι η πολυπλοκότητα έχει σημαντικό αρνητικό αντίκτυπο στην πρόθεση χρήσης. Όσο πιο σύνθετοι οι τελικοί χρήστες θεώρησαν το σύστημα εναλλακτικών καυσίμων, τόσο χαμηλότερη είναι η πρόθεση του χρήστη να χρησιμοποιήσει το σύστημα. Αυτές οι υποθέσεις έχουν αξιολογηθεί από τις ακόλουθες υποθέσεις:

H3-1: Η πολυπλοκότητα επηρέασε αρνητικά την PU των εναλλακτικών καυσίμων.
H3-2: Η πολυπλοκότητα επηρέασε αρνητικά την PEU των εναλλακτικών καυσίμων.

Δοκιμασία (TR)

Η δυνατότητα διεξαγωγής δοκιμών αναφέρεται στον βαθμό στον οποίο οι καινοτομίες μπορούν να δοκιμαστούν σε περιορισμένη βάση. Προκειμένου να διερευνηθεί η σχέση μεταξύ της ευστάθειας, της PU και της PEU για τη χρήση των τεχνολογιών, έχει πραγματοποιηθεί περιορισμένη μελέτη. Μόνο μία μελέτη αποκάλυψε ότι, όταν οι χρήστες αντιλήφθηκαν μεγαλύτερη δοκιμασία, αντιλήφθηκαν υψηλότερα επίπεδα χρησιμοποιήσης και χρηστικότητας της τεχνολογίας (Yang, 2007). Ως εκ τούτου εξετάστηκαν οι ακόλουθες υποθέσεις:

H4-1: Η δοκιμασία είχε θετική επίδραση στην PU των εναλλακτικών καυσίμων.
H4-2: Η δοκιμασία είχε θετική επίδραση στην PEU των εναλλακτικών καυσίμων.

Παρατηρητικότητα (OB)

Η παρατηρητικότητα είναι ο βαθμός στον οποίο άλλα άτομα μπορούν να δουν τα αποτελέσματα των καινοτομιών. Η έρευνα αυτή δείχνει ότι η χρήση εναλλακτικών καυσίμων θα είχε θετική επίδραση στην PU και PEU. Σύμφωνα με προηγούμενες μελέτες που συνδυάζουν το TAM και το IDT, όταν το προσωπικό θεωρούσε τα συστήματα
ευκολότερα παρατηρήσιμα ή περιγραφόμενα, τείνουν να αντιλαμβάνονται περισσότερο χρήσιμα και φιλικά προς το χρήστη συστήματα (Yang 2007). Προτάθηκαν οι ακόλουθες υποθέσεις:

H5-1: Η παρατηρητικότητα είχε θετική επίδραση στην PU των εναλλακτικών καυσίμων.

H5-2: Η παρατηρητικότητα είχε θετική επίδραση στην PEU των εναλλακτικών καυσίμων.

Διαδικασίες ασφαλείας και κίνδυνος (SPR)

Μια διαδικασία ασφαλούς εργασίας είναι μια βήμα προς βήμα περιγραφή μιας διαδικασίας όπου μια απόκλιση μπορεί να προκαλέσει μια απώλεια. Κίνδυνος είναι η πιθανότητα ένα άτομο να υποστεί βλάβη ή να έχει αρνητική επίδραση στην υγεία εάν εκτίθεται σε κίνδυνο. Μελέτες σημείωσαν ότι τα ξητήματα που σχετίζονται με τις διαδικασίες ασφάλειας και τον κίνδυνο σχετικά με τα καύσιμα πλοίων ΥΦΑ και ηλεκτρικής ενέργειας με συγκρίσιμες τεχνικές συνδέονταν αρνητικά με την τεχνολογία υιοθεσίας. Προτάθηκαν οι ακόλουθες υποθέσεις:

H6-1: Διαδικασίες ασφαλείας και Κίνδυνος που επηρέασε αρνητικά την PU των εναλλακτικών καυσίμων.

H6-2: Οι διαδικασίες ασφαλείας και ο κίνδυνος επηρέασαν αρνητικά την PEU των εναλλακτικών καυσίμων.

Πολιτική Διακυβέρνησης (GP)

Η πολιτική διακυβέρνησης αναφέρεται συγκεκριμένα στη δέσμη κανόνων, ελέγχων, πολιτικών και ψηφισμάτων για την υιοθέτηση αναδυόμενων τεχνολογιών. Προηγούμενες μελέτες (Verbeek R., G. Kodiijk et al., 2011), έχουν δείξει ότι οι πολιτικές θα μπορούσαν να έχουν θετικό αντίκτυπο στην υιοθέτηση εναλλακτικών καυσίμων, όπως είναι για παράδειγμα ο δείκτης ESI. Ο δείκτης Environmental Ship Index (ESI) επιβραβεύει την αειφορία στα ποντοπόρα πλοία. Τα πλοία που έχουν καλύτερες επιδόσεις από τον νομικό κανόνα ανταμείβονται με μια έκπτωση 10% επί των λιμενικών τελών. Ως εκ τούτου εξετάστηκαν οι ακόλουθες υποθέσεις:

H7-1: Η πολιτική διακυβέρνησης είχε θετική επίδραση στην PU των εναλλακτικών καυσίμων.

H7-2: Η πολιτική διακυβέρνησης είχε θετικό αντίκτυπο στην PEU των εναλλακτικών καυσίμων.
Υποδομή (INF)
Σχεδόν όλες οι ερευνητικές μελέτες αναφέρονται στην τρέχουσα έλλειψη ανεφοδιασμού LNG και δικτύων εφοδιαστικής αλυσίδας ηλεκτροδότησης. Οι υποδομές στο ΥΦΑ και την ηλεκτρική ενέργεια ως καύσιμα πλοίων, αναφέρονται στην υποδομή που απαιτείται για την υποδοχή ΥΦΑ ή για το cold ironing. Για να γίνει το LNG ένα ελκυστικό καύσιμο για την πλειονότητα των πλοίων, πρέπει να δημιουργηθεί ένα παγκόσμιο δίκτυο τερματικών σταθμών ανεφοδιασμού καυσίμων LNG (Energy Information Administration (EIA), 2015) και ηλεκτρικής ενέργειας. Έτσι, η έλλειψη αυτών των υποδομών στην Ελλάδα συνδέονται αρνητικά με την υιοθέτηση αυτών των εναλλακτικών καυσίμων. Προτάθηκαν οι ακόλουθες υποθέσεις:

H8-1: Η υποδομή επηρέασε αρνητικά την PU των εναλλακτικών καυσίμων.
H8-2: Η υποδομή επηρέασε αρνητικά την PEU των εναλλακτικών καυσίμων.

Ανεφοδιασμός & Ηλεκτροκίνηση (B & E)
Το LNG Bunkering είναι η πρακτική της προμήθειας καυσίμου υγροποιημένου φυσικού αερίου σε ένα πλοίο για ιδία κατανάλωση. Η ηλεκτροδότηση αναφέρεται στη διαδικασία μιας μηχανής ή συστήματος στη χρήση ηλεκτρικής ενέργειας. Αυτή τη στιγμή η δραστηριότητα του ανεφοδιασμού καυσίμων LNG έχει επικεντρωθεί γύρω από τη Σκανδιναβία και τις χώρες της Βαλτικής, όπου οι υποδομές είναι ήδη σε ισχύ και έχουν δείξει καλά αποτελέσματα, όπως και τα λιμάνια που έχουν δυνατότητα ηλεκτροδότησης ενός πλοίου. Η περιβαλλοντική νομοθεσία που ορίζεται από τον ΙΜΟ είναι η κύρια κινητήρια δύναμη πίσω από την ανάπτυξη αυτών των δραστηριοτήτων. Επομένως, αυτές οι φιλικές προς το περιβάλλον διαδικασίες, θα μπορούσαν να έχουν θετικό αντίκτυπο στην υιοθέτηση εναλλακτικών καυσίμων.

H9-1: Το Bunkering & Electrification είχε θετική επίδραση στην PU των εναλλακτικών καυσίμων.
H9-2: Η τροφοδοσία και η ηλεκτροκίνηση είχαν θετική επίδραση στην PEU των εναλλακτικών καυσίμων.
Οικονομικές και χρηματοοικονομικές ανησυχίες (E&F)

Πρόκειται για μια θεμελιωδή μεταβλητή, διότι η επιλογή της επένδυσης είναι μια σύνθετη διαδικασία, δεδομένου ότι δεν έχει να κάνει με ένα προϊόν, αλλά με μια αλυσίδα υποδομών που απαιτούν σημαντικές επενδύσεις κεφαλαίου. Έτσι, υποθέσαμε ως εξής:

Η10-1: Οι οικονομικές και χρηματοοικονομικές ανησυχίες επηρέασαν αρνητικά την PU των εναλλακτικών καυσίμων.
Η10-2: Οι οικονομικές και χρηματοπιστωτικές ανησυχίες επηρέασαν αρνητικά την PEU των εναλλακτικών καυσίμων.

Κανονισμοί Λιμένων (PR)
Ο ρόλος των λιμένων περιορίζεται στη βιβλιογραφία. Αρκετές μελέτες που μελετούν τις συγκεκριμένες τεχνολογίες, δεν αναφέρουν τις λιμενικές αρχές/τους λιμένες ως έναν από τους βασικούς πρωταγωνιστές στη συγκεκριμένη τεχνολογία. Ωστόσο, το λιμάνι είναι αυτό που ουσιαστικά θα πρέπει να διαμορφωθεί σε ένα τεχνολογικό σύστημα και να γίνει ο "διαμεσολαβητής" για την απορρόφηση χρηματοδοτικών πόρων που θα φέρουν ταχεία ανάπτυξη. Η εικόνα 3.1 δείχνει το ρόλο των λιμενικών αρχών ως μεσαίωντες για την επίλυση του προβλήματος της "κότας και του αυγού" στην ανάπτυξη του ανεφοδιασμού καυσίμου LNG.
Εικόνα 3.1: Ο ρόλος των λιμενικών αρχών στην ανάπτυξη του ανεφοδιασμού καυσίμων LNG

(Πηγή: Wang & Notteboom, 2014)

Προτάθηκαν οι ακόλουθες υποθέσεις:

H11-1: Οι κανονισμοί των λιμένων είχαν θετική επίδραση στην PU των εναλλακτικών καυσίμων.

H11-2: Οι κανονισμοί των λιμένων είχαν θετικό αντίκτυπο στην PEU των εναλλακτικών καυσίμων.

Τεχνολογικές ανησυχίες (TC)

Ενώ το ΥΦΑ και η ηλεκτρική ενέργεια αποτελούν ελπιδοφόρες λύσεις, υπάρχουν τεχνολογικές ανησυχίες σχετικά με την πραγματική εφαρμογή τους. Οι μεγαλύτερες προκλήσεις έχουν να κάνουν με τα ήδη υπάρχοντα πλοία και στο πώς μπορούν να μετατραπούν σε πλοία που θα χρησιμοποιούν τα δύο εναλλακτικά καύσιμα. Αυτές οι υποθέσεις έχουν αξιολογηθεί από τις ακόλουθες υποθέσεις:
H12-1: Οι τεχνολογικές ανησυχίες επηρέασαν αρνητικά την PU των εναλλακτικών καυσίμων.

H12-2: Οι τεχνολογικές ανησυχίες επηρέασαν αρνητικά την PEU των εναλλακτικών καυσίμων.

Διαθεσιμότητα (AVL)
Η διαθεσιμότητα είναι πολύ σημαντικός παράγοντας. Τα μελλοντικά καύσιμα πρέπει να διατίθενται στην αγορά σε επαρκείς ποσότητες. Με την αντίληψη ότι οι ΥΦΑ και η Ηλεκτρική ενέργεια πληρούν τις απαιτήσεις της ναυτιλιακής βιομηχανίας, οι χρήστες έχουν δει ένα υψηλότερο επίπεδο χρησιμότητας του συστήματος. Ωστόσο, υπάρχει αβεβαιότητα γύρω από αυτόν τον παράγοντα. Προτάθηκαν οι ακόλουθες υποθέσεις:

H13-1: Διαθεσιμότητα αρνητικά επηρεασμένη PU των εναλλακτικών καυσίμων.

H13-2: Διαθεσιμότητα επηρεαζόμενη αρνητικά στην PEU των εναλλακτικών καυσίμων.

Δημόσια εμπιστοσύνη (PT)
Δεδομένου ότι οι παράγοντες που επηρεάζουν την αποδοχή του ΥΦΑ και της Ηλεκτρικής ενέργειας θεωρούνται ως φιλικοί προς το περιβάλλον ή συνδέονται στενά με τις ανάγκες του πελάτη (λόγω της νομοθεσίας του ΙΜΟ), η εμπιστοσύνη του κοινού θα προωθήσει τη συγχώνευση και την αποδοχή εναλλακτικών καυσίμων. Υποθέσαμε ως εξής:

H14-1: Το Public Trust είχε θετική επίδραση στην PU των εναλλακτικών καυσίμων.

H14-2: Το Public Trust είχε θετική επίδραση στην PEU των εναλλακτικών καυσίμων.

Αντιλαμβανόμενη Χρησιμότητα (PU)
PU είναι ο βαθμός στον οποίο ένα άτομο πιστεύει ότι ένα συγκεκριμένο σύστημα θα βελτιώσει την απόδοση του έργου του μέσα στο οργανωτικό πλαίσιο (Davis et al., 1989). Οι ερευνητές διερεύνησαν το TAM υποσημειώνοντας ότι η PU ήταν έγκυρη για την πρόβλεψη της αποδοχής διαφορετικών τεχνολογιών από τους ανθρώπους (Venkatesh & Davis, 2000).

H15: Η PU θα έχει θετική επίδραση στην πρόθεση συμπεριφοράς για χρήση των εναλλακτικών καυσίμων.
Η Αντιλαμβανόμενη Ευκολία Χρήσης (PEU)

Το PEU είναι ο βαθμός στον οποίο ένα άτομο πιστεύει ότι η χρήση ενός συγκεκριμένου συστήματος θα είναι αβίαστη (Davis et al., 1989). Προηγούμενες μελέτες έχουν δείξει ότι η PEU έχει θετικό αντίκτυπο στην πρόθεση συμπεριφοράς των τελικών χρηστών. Έτσι, αυτή η έρευνα, υποθέτει:

Η16: Η PEU είχε θετική επίδραση στην PU των εναλλακτικών καυσίμων.
ΚΕΦΑΛΑΙΟ 4ο ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΑ

4.1. Εισαγωγή

Στόχος του συγκεκριμένου κεφαλαίου είναι η παρουσίαση και η ανάλυση των αποτελεσμάτων που προέκυψαν από τις απαντήσεις των συμμετεχόντων. Μετά τη συλλογή των στοιχείων στο πρόγραμμα Microsoft Excel, όπως αναφέρθηκε στο προηγούμενο κεφάλαιο, ακολούθησε η στατιστική ανάλυση των δεδομένων.

Κατ’ αρχήν παρουσιάζονται αναλυτικά τα αποτελέσματα των δημογραφικών στοιχείων που αφορούν το συνολικό αριθμό των συμμετεχόντων. Έπειτα παρουσιάζονται τα περιγραφικά στατιστικά των ανεξάρτητων μεταβλητών του ερευνητικού μοντέλου, τα οποία εξετάστηκαν αρχικά ομαδοποιημένα και στη συνέχεια επιχειρείται μια προσπάθεια ανάδειξης της ορθής επιλογής των ανεξάρτητων μεταβλητών που έδειξαν σημαντική συσχέτιση ως προς τις δύο εξαρτημένες μεταβλητές του υβριδικού μοντέλου.

Στη συνέχεια, παρουσιάζονται οι συσχετίσεις των παραγόντων, η ερμηνεία τους και τα αποτελέσματα που συνάδουν καθώς και ο έλεγχος τους.

4.2 Ανάλυση Δημογραφικών Στοιχείων

Ο Πίνακας 4.1 παρουσιάζει τα δημογραφικά στοιχεία που προκύπτουν από το συνολικό δείγμα συμμετεχόντων. Το συνολικό δείγμα είναι 50 και παρουσιάζονται η ελάχιστη και μέγιστη τιμή για κάθε ερώτηση, καθώς και ο μέσος όρος και η τυπική απόκλιση.

Πίνακας 4.1: Δημογραφικά στοιχεία των ερωτηθέντων

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>50</td>
<td>1</td>
<td>2</td>
<td>1,10</td>
<td>.303</td>
</tr>
<tr>
<td>Age</td>
<td>50</td>
<td>1</td>
<td>6</td>
<td>3,26</td>
<td>1,103</td>
</tr>
<tr>
<td>Level of Education</td>
<td>50</td>
<td>3</td>
<td>5</td>
<td>4,08</td>
<td>.488</td>
</tr>
</tbody>
</table>
In which Maritime Industry sector do you belong?

<table>
<thead>
<tr>
<th>In which Maritime Industry sector do you belong?</th>
<th>50</th>
<th>1</th>
<th>8</th>
<th>3,32</th>
<th>1,900</th>
</tr>
</thead>
</table>

Valid N (listwise) 50

Anaforetiká me to φύλο, uphrézan sýmanistikés diáforopoiúseis, sým芬o na me ton Πίνακα 4.2. Δi se sýnolo δείγματος 50 ατόμων, to poßostó tov on anðrówn einai 90%, eñv tov on gynaikóvn 10% geçonó ps πou antikatoptrízei poßó anðrōkratoúmenh einai h nautiliakí biorðiçhnia afoú apò ta 50 erwtitmatoló gia, ta 45 sýmplanròthkan apò anðre ðai molís 5 apò gynaíkes.

Πίνακας 4.2: Το Φύλο των συμμετεχόντων

Σχετικά me tin ÷likía ton stakeholders sto syγkekriméno δείγμα, òpws φαινεται anaforetiká stoν Πίνακα 3, to megálýtero poßostó syγκεντρώνεται stin ÷likiaκí oµáda 41 me 50 χρονών me tìµh 36%. Αµέσως metá akolóuðouν ta átoma pou brískontai stis ÷likiaκés oµádes apo 51 èwos 60 χρονών me 26% kai 31 èwos 40 χρονών me poßostó 24%. Ta átoma pou brískontai stin ÷likía ton 61 èwos 70 èchoun poßostó 8%, eñv akolóuðouν ta átoma pou brískontai stin ÷likía ton 71 kai áno me poßostó 4%. Móliç to 2% eγγίζουν ta átoma pou aníkoun stin pròtì ÷likiaκí oµáda, pou eìnia ta átoma mé˘hri 30 χρονών.
Πίνακας 4.3: Η ηλικία των συμμετεχόντων

Ένα ενδιαφέρον χαρακτηριστικό που προέκυψε από την εξαγωγή συμπερασμάτων ήταν ότι το δείγμα, τα ενδιαφερόμενα μέρη (stakeholders) στην ναυτιλία στην Ελλάδα έχουν υψηλό επίπεδο εκπαίδευσης. Ο Πίνακας 3 δείχνει τα ποσοστά των stakeholders ανά βαθμίδα εκπαίδευσης. Παρατηρείται ότι πολύ υψηλό ποσοστό συγκεντρώνεται στα άτομα με μεταπτυχιακό τίτλο, το οποίο ανέρχεται στο 76%. Ακολουθούν τα άτομα με διδακτορικό τίτλο με ποσοστό 16% και στη συνέχεια τα άτομα τριτοβάθμιας εκπαίδευσης με ποσοστό 8%. Ιδιαίτερο ενδιαφέρον παρουσίασε το γεγονός ότι δεν υπάρχει καμία αντιπροσώπευση στο επίπεδο εκπαίδευσης δευτεροβάθμιας εκπαίδευσης ή ιδιωτικής εκπαίδευσης καθώς και στην κατηγορία «Άλλο». Επομένως, το σχήμα απεικονίζει τις τρεις κατηγορίες με το επίπεδο εκπαίδευσης των ερωτώμενων.

Πίνακας 4.4: Το επίπεδο εκπαίδευσης των ενδιαφερόμενων
Τέλος, σχετικά με το ναυτιλιακό τομέα στον οποίο απασχολούνται οι συμμετέχοντες, όπως αναλύεται στον Πίνακα 4, παρατηρείται πως το 90% σχεδόν του δείγματος εργάζονται σε νηογνώμονες και ναυτιλιακές εταιρίες ή είναι εφοπλιστές. Αναλυτικά, το μεγαλύτερο ποσοστό 30% παρατηρείται σε δύο κατηγορίες, τόσο στα άτομα που εργάζονται σε νηογνώμονες όσο και στα τόσα που εργάζονται σε ναυτιλιακές εταιρίες. Την Τρίτη θέση κατέχουν οι εφοπλιστές με ποσοστό 28%. Έπειτα ακολουθούν τα άτομα που εργάζονται στην Ναυπηγική Βιομηχανία με ποσοστό 6% και στη συνέχεια υπάρχουν 2 άτομα τα οποία με ποσοστό 4% έχουν απαντήσει στην κατηγορία «Κανένα από τα παραπάνω» γεγονός που δεν τους αποκλείει καθώς υπάρχουν άτομα όνομα των 71 χρόνων που είναι πιθανό να έχουν συνταξιοδοτηθεί. Τέλος, παρατηρείται με πολύ μικρή εκπροσώπηση, να υπάρχει ένα (1) άτομο που εργάζεται σε εταιρίες σχετικές με θαλάσσιους πόρους, ανανεώσιμες πηγές ενέργειας (ΑΠΕ) με ποσοστό 2%. Καμία εκπροσώπηση δεν υπήρχε από τους τομείς της διαχείρισης πλοίων (Λιμενική Αρχή, εμπορική ναυτιλία) και από συναφείς θαλάσσιες δραστηριότητες όπως από τον τομέα του θαλάσσιου τουρισμού. Δεν πρέπει να μην σχολιαστεί οστόσο, ότι η εκπροσώπηση του 90% αντικατοπτρίζει τα ενδιαφέρομενα μέρη που τους επηρεάζει άμεσα η υιοθέτηση αυτών των δύο εναλλακτικών καυσίμων, του LNG και της ηλεκτρικής ενέργειας και υπάρχει γνώση περί του θέματος.

Πίνακας 4.5: Ο Ναυτιλιακός τομέας στον οποίο απασχολούνται οι συμμετέχοντες

<table>
<thead>
<tr>
<th>Πιστοποιητικό</th>
<th>Πιστοποιητικό</th>
<th>Συνολικός</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Συλλογιστής</td>
<td>15</td>
<td>30.0</td>
</tr>
<tr>
<td>1 Αμοιβαίος</td>
<td>14</td>
<td>28.0</td>
</tr>
<tr>
<td>4 Μηχανοσυστατικά (Marine equipment, construction, shipbuilding)</td>
<td>3</td>
<td>6.0</td>
</tr>
<tr>
<td>5 Ανανεώσιμες πηγές ενέργειας (ΑΠΕ)</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>6 Κανένα από τα παραπάνω</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td>Συνολικός</td>
<td>50</td>
<td>100.0</td>
</tr>
</tbody>
</table>
4.3 Αποτελέσματα και Συζήτηση

Για όλες τις μεταβλητές, οι μέσοι όροι και οι τυπικές αποκλίσεις προσδιορίστηκαν και παρουσιάστηκαν στον Πίνακα 4.6. Ο υψηλότερος μέσος όρος βρέθηκε στην Συμβατότητα (CPT) με ποσοστό 2,81, ενώ ο χαμηλότερος μέσος όρος βρίσκεται στους Κανονισμούς Λιμένων (PR) που είναι 1,80 σε κλίμακα Likert από 1 έως 5. Ο μέσος όρος για τους δύο (2) καθοριστικούς παράγοντες του μοντέλου Αποδοχής της Τεχνολογίας, την Αντιλαμβανόμενη Χρησιμότητα (PU) και την Αντιλαμβανόμενη Ευκολία Χρήσης (PEU) ήταν 2,94 και 3,33 αντίστοιχα.

Πίνακας 4.6: Περιγραφικά Στατιστικά

<table>
<thead>
<tr>
<th>Construct (Items)</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD</td>
<td>2,00</td>
<td>0,763</td>
<td>50</td>
</tr>
<tr>
<td>TR</td>
<td>2,70</td>
<td>0,807</td>
<td>50</td>
</tr>
<tr>
<td>OB</td>
<td>2,31</td>
<td>0,915</td>
<td>50</td>
</tr>
<tr>
<td>CPT</td>
<td>2,81</td>
<td>0,681</td>
<td>50</td>
</tr>
<tr>
<td>CPX</td>
<td>2,05</td>
<td>0,559</td>
<td>50</td>
</tr>
<tr>
<td>SPR</td>
<td>2,41</td>
<td>0,560</td>
<td>50</td>
</tr>
<tr>
<td>GP</td>
<td>1,81</td>
<td>0,698</td>
<td>50</td>
</tr>
<tr>
<td>INF</td>
<td>1,82</td>
<td>0,474</td>
<td>50</td>
</tr>
<tr>
<td>B&E</td>
<td>2,77</td>
<td>0,671</td>
<td>50</td>
</tr>
<tr>
<td>E&F</td>
<td>2,12</td>
<td>0,625</td>
<td>50</td>
</tr>
<tr>
<td>PR</td>
<td>1,80</td>
<td>0,822</td>
<td>50</td>
</tr>
<tr>
<td>TC</td>
<td>2,04</td>
<td>0,904</td>
<td>50</td>
</tr>
<tr>
<td>AVL</td>
<td>2,61</td>
<td>1,166</td>
<td>50</td>
</tr>
<tr>
<td>PT</td>
<td>2,58</td>
<td>0,356</td>
<td>50</td>
</tr>
<tr>
<td>PU</td>
<td>2,94</td>
<td>0,706</td>
<td>50</td>
</tr>
<tr>
<td>PEU</td>
<td>3,33</td>
<td>0,929</td>
<td>50</td>
</tr>
</tbody>
</table>
Το επόμενο βήμα στην ανάλυση δεδομένων ήταν να εξεταστεί η σημασία και η σημαντικότητα των υποθετικών αλληλεπιδράσεων του ερευνητικού μοντέλου. Τα αποτελέσματα της ανάλυσης του δομικού μοντέλου, περιλαμβάνουν τους συσχετισμούς για κάθε ομαδοποιημένη μεταβλητή, όπως παρουσιάζονται στον παρακάτω Πίνακα. Ο Πίνακας 4.7, δείχνει τους προκύπτοντες συντελεστές διαδρομής του προτεινόμενου ερευνητικού μοντέλου. Για διευκόλυνση έχουν τονιστεί εκείνες οι μεταβλητές που παρουσιάζουν σημαντική συσχέτιση και οι οποίες αναλύονται παρακάτω.

Πίνακας 4.7: Οι συσχετισμοί μεταξύ των μεταβλητών
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>PU</th>
<th>PEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD</td>
<td></td>
<td>0,058</td>
<td>0,613**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,689</td>
<td>0,000</td>
</tr>
<tr>
<td>TR</td>
<td></td>
<td>-0,221</td>
<td>0,485**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,122</td>
<td>0,000</td>
</tr>
<tr>
<td>OB</td>
<td></td>
<td>0,547**</td>
<td>0,230</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,100</td>
</tr>
<tr>
<td>CPT</td>
<td></td>
<td>0,456**</td>
<td>0,476**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,001</td>
<td>0,000</td>
</tr>
<tr>
<td>CPX</td>
<td></td>
<td>-0,569**</td>
<td>-0,261</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,067</td>
</tr>
<tr>
<td>SPR</td>
<td></td>
<td>0,738**</td>
<td>-0,129</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,371</td>
</tr>
<tr>
<td>GP</td>
<td></td>
<td>0,270</td>
<td>0,381**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,058</td>
<td>0,006</td>
</tr>
<tr>
<td>INF</td>
<td></td>
<td>-0,686**</td>
<td>0,006</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,965</td>
</tr>
<tr>
<td>B&E</td>
<td></td>
<td>-0,400**</td>
<td>-0,272</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,004</td>
<td>0,056</td>
</tr>
<tr>
<td></td>
<td>Συσχέτιση</td>
<td>Pearson Correlation</td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>E&F</td>
<td></td>
<td>-0.404**</td>
<td>0.004</td>
</tr>
<tr>
<td>PR</td>
<td></td>
<td>0.293*</td>
<td>0.039</td>
</tr>
<tr>
<td>TC</td>
<td></td>
<td>-0.846**</td>
<td>0.000</td>
</tr>
<tr>
<td>AVL</td>
<td></td>
<td>-0.738**</td>
<td>0.000</td>
</tr>
<tr>
<td>PT</td>
<td></td>
<td>0.116</td>
<td>0.423</td>
</tr>
<tr>
<td>PU</td>
<td></td>
<td>1</td>
<td>0.552</td>
</tr>
<tr>
<td>PEU</td>
<td></td>
<td>0.434**</td>
<td>0.002</td>
</tr>
<tr>
<td>INV</td>
<td></td>
<td>-0.197</td>
<td>0.170</td>
</tr>
</tbody>
</table>

**. Η συσχέτιση είναι σημαντική στο επίπεδο 0,01.
*. Η συσχέτιση είναι σημαντική στο επίπεδο 0,05.
Ο παράγοντας Αντιλαμβανόμενη Χρησιμότητα (PU) επηρεάστηκε σημαντικά από δύο εξωγενείς παράγοντες από την Θεωρία Διάχυσης της Τεχνολογίας: την Παρατηρητικότητα (OB) (547 P <0.001) και την Πολυπλοκότητα (CPX) (.569 P <0.001) που υποστηρίζουν τις υποθέσεις Η4-1 Η2-1 και Η3-1 αντίστοιχα. Αναλυτικά, η Παρατηρητικότητα παρουσιάζει θετικό αντίκτυπο στην Αντιλαμβανόμενη Χρησιμότητα των δύο εναλλακτικών καυσίμων, του LNG και της ηλεκτρικής ενέργειας. Στον Πίνακα 10, παρατίθενται τα αποτελέσματα από τη διερεύνηση της σχέσης της παρατηρητικότητας του δείγματος με την μεταβλητή ελέγχου. Παρατηρούμε ότι όλες οι σχέσεις είναι στατιστικά σημαντικές στο 1%.

Πίνακας 4.8: Οι συσχέτισες της Παρατηρητικότητας με την PU

<table>
<thead>
<tr>
<th>OBSERVABILITY (OB)</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OB-1) I could have many opportunities to discuss the usage of Alternative Fuels</td>
<td>,527**</td>
</tr>
<tr>
<td>(OB-2) I have seen the application of Alternative Fuels</td>
<td>,380**</td>
</tr>
<tr>
<td>(OB-3) I have seen my coworkers using Alternative Fuels</td>
<td>,441**</td>
</tr>
<tr>
<td>(OB-4) I can easily feel that Alternative Fuels could bring me some benefits</td>
<td>,507**</td>
</tr>
<tr>
<td>(OB-5) I have seen the demonstrations of Alternative Fuels</td>
<td>,562**</td>
</tr>
</tbody>
</table>
Ο θετικός αντίκτυπος στην Αντίλαμβανόμενη Χρησιμότητα αντικατοπτρίζεται από το ότι οι συμμετέχοντες θεωρούν ότι έχουν τη δυνατότητα επικοινωνίας των αποτελεσμάτων χρήσης τους, η πλειονότητα έχει δει τα «οφέλη» των δύο εναλλακτικών καυσίμων και γενικότερα τα αποτελέσματα της καινοτομίας από άλλους συναδέλφους, δηλαδή μπορούν να συζητήσουν για αυτά με άλλους. Επίσης, σχεδόν το 80% των συμμετεχόντων, όπως φαίνεται στον παρακάτω Πίνακα θεωρούν ότι τα εναλλακτικά καύσιμα LNG και ηλεκτρική ενέργεια θα μπορούσαν να αποφέρουν οφέλη στους ίδιους. Μόλις ένα άτομο απάντησε ότι «διαφωνεί απόλυτα» με ποσοστό 2% ενώ κανείς δεν βρέθηκε να «διαφωνεί». Το υπόλοιπο 18% φάνηκε να είναι ουδέτερο ως προς τη συγκεκριμένη σχέση.

Πίνακας 4.9: Τα εναλλακτικά καύσιμα παρατηρείται ότι θα φέρουν οφέλη

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>26.0</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>54.0</td>
<td>54.0</td>
<td>80.0</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>18.0</td>
<td>18.0</td>
<td>98.0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2.0</td>
<td>2.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total | 50 | 100.0 | 100.0 |
Από την άλλη πλευρά, το χαρακτηριστικό της Πολυπλοκότητας έχει αρνητικό αντίκτυπο στην Αντιλαμβανόμενη Χρησιμότητα των δύο εναλλακτικών καυσίμων. Στον Πίνακα 4.10, βρίσκονται οι συσχετίσεις της Πολυπλοκότητας του δείγματος με την Αντιλαμβανόμενη Χρησιμότητα. Παρατηρούμε ότι τέσσερις από τις πέντε παρουσιάζουν σημαντική συσχέτιση, ενώ αντίθετα, δεν υπάρχει άμεση συσχέτιση της κατανόησης των λειτουργιών των συγκεκριμένων ναυτιλιακών καυσίμων και της άποψης ότι δεν είναι περίπλοκα, δηλαδή το κατά πόσο μπορεί, μια καινοτομία να γίνει αντιληπτή.

Πίνακας 4.10: Οι συσχετίσεις της Πολυπλοκότητας με την PU

<table>
<thead>
<tr>
<th>COMPLEXITY (CPX)</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CPX-1) I can understand the functions of Alternative Fuels and Sig. (2-tailed)</td>
<td>Pearson Correlation (.049)</td>
</tr>
<tr>
<td>think that they are not complex</td>
<td>Sig. (2-tailed) (.734)</td>
</tr>
<tr>
<td></td>
<td>N (50)</td>
</tr>
<tr>
<td>(CPX-2) Alternative Fuels have refuel complexity</td>
<td>Pearson Correlation (-.446^{**})</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) (.001)</td>
</tr>
<tr>
<td></td>
<td>N (50)</td>
</tr>
<tr>
<td>(CPX-3) Diverse components within the system itself, results complexity</td>
<td>Pearson Correlation (-.530^{**})</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) (.000)</td>
</tr>
<tr>
<td></td>
<td>N (50)</td>
</tr>
<tr>
<td>(CPX-4) I think that fragmented decision-making landscape across global/national does not help in implementation of Alternative Fuels</td>
<td>Pearson Correlation (-.566^{**})</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) (.000)</td>
</tr>
<tr>
<td></td>
<td>N (50)</td>
</tr>
<tr>
<td>(CPX-5) Efficiency of Alternative Fuels is still at a low level</td>
<td>Pearson Correlation (-.418^{**})</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) (.003)</td>
</tr>
<tr>
<td></td>
<td>N (50)</td>
</tr>
</tbody>
</table>
Τα αποτελέσματα έδειξαν ότι η συντριπτική πλειοψηφία των συμμετεχόντων, με ποσοστό 82% πιστεύουν ότι τα εναλλακτικά καύσιμα διαθέτουν ένα σύνθετο σύστημα ανεφοδιασμού καυσίμων. Συγκεκριμένα, το 24% «Συμφώνησε Απόλυτα» στην παραπάνω παραδοχή, ενώ το 58% έδειξε να «Συμφωνεί». Το υπόλοιπο 14% έμεινε ουδέτερο στην συγκεκριμένη παραδοχή ενώ μόλις δύο άτομα με ποσοστό 4% βρέθηκε να διαφωνεί.

Πίνακας 4.11: Τα εναλλακτικά καύσιμα διαθέτουν ένα σύνθετο σύστημα ανεφοδιασμού καυσίμων

<table>
<thead>
<tr>
<th>Alternative Fuels have refuel complexity</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>24,0</td>
<td>24,0</td>
<td>24,0</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>58,0</td>
<td>58,0</td>
<td>82,0</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>14,0</td>
<td>14,0</td>
<td>96,0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4,0</td>
<td>4,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>
Επιπρόσθετα, ο αρνητικός αντίκτυπος που παρουσιάζει η πολυπλοκότητα οφείλεται στο ότι πάρα πολλοί συμμετέχοντες, σχεδόν το 75% θεωρούν ότι η αποδοτικότητα των εναλλακτικών καυσίμων παραμένει σε χαμηλό επίπεδο και το 54% των συμμετεχόντων «Συμφώνησε Απόλυτα» ότι το κατακερματισμένο τοπίο στη λήψη αποφάσεων σε παγκόσμιο / εθνικό επίπεδο συμβάλλει στον αρνητικό αντίκτυπο των εναλλακτικών καυσίμων. Τέλος, συνολικά το 90% των συμμετεχόντων, όπως φαίνεται στον Πίνακα 4.12, συμφώνησε πως τα διαφορετικά στοιχεία (εξαρτήματα) μέσα στο ίδιο το σύστημα, έχει ως αποτέλεσμα την Πολυπλοκότητα.

Πίνακας 4.12: Τα διαφορετικά εξαρτήματα μέσα στο υφιστάμενο σύστημα προκαλεί Πολυπλοκότητα

<table>
<thead>
<tr>
<th>Valid</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>42.0</td>
<td>42.0</td>
<td>42.0</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>48.0</td>
<td>48.0</td>
<td>90.0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6.0</td>
<td>6.0</td>
<td>96.0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4.0</td>
<td>4.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Οι ανεξάρτητες μεταβλητές της Διαδικασίες Ασφάλειας και του Ρίσκου (SPR), (738 P <0,01) και ο Ανεφοδιασμός και η Ηλεκτροκίνηση (B & E), (-4.00, P <0,01) έχουν επίσης σημαντική επίδραση στην εξαρτώμενη μεταβλητή, την Αντιλαμβανόμενη Χρησιμότητα (PU). Ωστόσο, το αποτέλεσμα ήταν σε αντίθεση με ότι υποθέσαμε (H6-1 και H9-1) (απορρίφθηκαν). Συγκεκριμένα,
Οι διαδικασίες ασφάλειας και το ρίσκο παρουσίασαν θετική επίδραση στην Αντιλαμβανόμενη Χρησιμότητα των LNG και της ηλεκτρικής ενέργειας, σε αντίθεση με τις υποθέσεις μας. Στον Πίνακα 4.13, παρατίθενται τα αποτελέσματα από τη διερεύνηση της σχέσης της συγκεκριμένης μεταβλητής με την μεταβλητή ελέγχου, δηλαδή την Αντιλαμβανόμενη Χρησιμότητα, που όπως είδαμε παραπάνω, στον Πίνακα 4.7, παρουσίασα υπολογικά σημαντική συσχέτιση στο 1% (,738**). Παρατηρούμε ότι μία σχέση είναι στατιστικά σημαντική στο 5% και άλλες δύο είναι στατιστικά σημαντικές στο 1%.

Πίνακας 4.13: Οι συσχετίσεις των Διαδικασιών Ασφάλειας και Ρίσκου με την PU

<table>
<thead>
<tr>
<th>SAFETY PROCEDURES & RISK (SPR)</th>
<th>PU</th>
</tr>
</thead>
</table>
| (SPR-1) A failure to properly address safety issues in the earliest stages of development could influence the future development of these Alternative fuels | Pearson Correlation: 0.346*
 Sig. (2-tailed): 0.014
 N: 50 |
| (SPR-2) Hazard identification study is necessary | Pearson Correlation: -0.165
 Sig. (2-tailed): 0.253
 N: 50 |
| (SPR-3) I think using Alternative fuels has potential risk | Pearson Correlation: 0.181
 Sig. (2-tailed): 0.209
 N: 50 |
| (SPR-4) Concerns about extremely low temperatures of the LNG fuel | Pearson Correlation: 0.670**
 Sig. (2-tailed): 0.000
 N: 50 |
| (SPR-5) I will feel safe to be on vessels fueled by alternative fuels | Pearson Correlation: 0.539**
 Sig. (2-tailed): 0.000 |
Η πλειονότητα των συμμετέχόντων θεωρούν πως η αδυναμία αντιμετώπισης των ζητημάτων ασφάλειας στα πρώιμα στάδια της ανάπτυξης θα μπορούσε να έχει αρνητικό αντίκτυπο στη μελλοντική ανάπτυξη και χρήση αυτών των εναλλακτικών καυσίμων με ένα ποσοστό 22% να διαφωνεί και παρόμοια ενώ 64% συνολικά συμφώνησαν πως η χρήση των δύο συγκεκριμένων καυσίμων ενέχει δυνητικό κίνδυνο, ένα ποσοστό της τάξεως 30% συνολικά διαφώνησε. Η ερώτηση που δίχασε περισσότερο και σημείωσε την πιο στατιστικά σημαντική συσχέτιση ήταν σχετικά με τις ανησυχίες για τις εξαιρετικά χαμηλές θερμοκρασίες του καυσίμου LNG, όπως φαίνεται στον παρακάτω Πίνακα και σχήμα. Ωστόσο, οι περισσότεροι συμμετέχοντες με ποσοστό 66% συμφώνησαν ότι θα αισθάνονταν ασφαλείς στα πλοία που τροφοδοτούνται από αυτά τα εναλλακτικά καύσιμα και σε αυτό συμφώνησαν σχεδόν όλοι οι συμμετέχοντες με 92% είναι στο ότι απλά απαιτούνται μελέτες για την αναγνώριση κινδύνου.

Πίνακας 4.14: Οι ανησυχίες σχετικά με τις χαμηλές θερμοκρασίες του LNG, εφερε διχασμό στους συμμετέχοντες
Παρομοίως, τα αποτελέσματα έδειξαν αρνητική επίδραση (-4,00) της μεταβλητής του Ανεφοδιασμού και της Ηλεκτροδότησης στην Αντιλαμβανόμενη Χρησιμότητα των LNG και της ηλεκτρικής ενέργειας, σε αντίθεση με τις υποθέσεις μας. Στον Πίνακα 4.15, παρουσιάζονται οι συσχετίσεις και παρατηρούμε ότι μόνο μία σχέση είναι στατιστικά σημαντική στο 1% (-.727**).

Πίνακας 4.15: Οι συσχετίσεις του ανεφοδιασμού και της ηλεκτροδότησης με την PU

<table>
<thead>
<tr>
<th>Concerns about extremely low temperatures of the LNG fuel</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>1</td>
<td>9</td>
<td>18,0</td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13</td>
<td>26,0</td>
<td>44,0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>8,0</td>
<td>52,0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15</td>
<td>30,0</td>
<td>82,0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9</td>
<td>18,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUNKERING & ELECTRIFICATION (B&E)</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B&E-1) Lack of guidelines for procedures for bunkering is a barrier</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>(B&E-2) I think that an international standard for LNG bunkering should not be established</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>(B&E-3) Developing battery</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>-0.188</td>
</tr>
</tbody>
</table>

- 80 -
Technology will harbor ship potential

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>50</td>
<td>.190</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

The results showed that the lack of direction guidelines for the processes confused the participants as 44% agreed overall with the above statement while 46% disagreed overall with the specific statement. Similarly, the pie chart was divided in the second statement, which presented a very high correlation as compared to the control variable, Anticipated usefulness, as regards the establishment of an international standard for the supply of liquefied natural gas (LNG). Twenty-two (22) agreed overall, with 44% while twenty-one (21) disagreed overall with 42%. This dichotomy is reflected in Table 4.16.

Table 4.16: “The pie chart” compared to the establishment of an international standard for the supply of LNG

Πίνακας 4.16: «Η πίτα μοιράστηκε» σε σχέση με την θέσπιση ενός διεθνούς προτύπου για τον ανεφοδιασμό του LNG
Αντίθετα, τα αποτελέσματα που αφορούν την ηλεκτρική ενέργεια και ότι «η πρόοδος της τεχνολογίας των μπαταριών θα δώσει το πλεονέκτημα σε μελλοντικές εφαρμογές πλοίων», έδειξαν ότι η πλειονότητα των συμμετεχόντων συμφωνεί με την συγκεκριμένη παράδοξη με ποσοστό 68% συνολικά (βλέπε Πίνακα 4.17).

Πίνακας 4.17: Σημαντική η πρόοδος της τεχνολογίας των μπαταριών

<table>
<thead>
<tr>
<th>Αξίας</th>
<th>Ποσοστό (%)</th>
<th>Σύνολο (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΟΧΙ</td>
<td>32%</td>
<td>32%</td>
</tr>
<tr>
<td>ΕΙΣ</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>ΕΙΣ</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>ΟΧΙ</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>ΟΧΙ</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αξίας</th>
<th>Ποσοστό (%)</th>
<th>Σύνολο (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΟΧΙ</td>
<td>32%</td>
<td>32%</td>
</tr>
<tr>
<td>ΕΙΣ</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>ΕΙΣ</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>ΟΧΙ</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>ΕΙΣ</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- 82 -
Τα αποτελέσματα έδειξαν επίσης ότι η Αντιλαμβανόμενη Χρησιμότητα (PU) επηρεάζεται σημαντικά από τις Τεχνολογικές Προκλήσεις (TC) (-846, P <0.001) και την Διαθεσιμότητα (AVL) (-738, P <0.001) υποστηρίζοντας τις υποθέσεις H12-1 και H13-1, αντίστοιχα. Αυτές οι δύο μεταβλητές παρουσίασαν την υψηλότερη συσχέτιση.

Οι Τεχνολογικές Προκλήσεις έχουν αρνητικό αντίκτυπο στην Αντιλαμβανόμενη Χρησιμότητα των δύο εναλλακτικών καυσίμων, του LNG και της ηλεκτρικής ενέργειας. Στον Πίνακα 4.18, παρατίθενται τα αποτελέσματα από τη διερεύνηση της σχέσης των Τεχνολογικών Προκλήσεων του δείγματος με την μεταβλητή ελέγχου. Παρατηρούμε ότι όλες οι σχέσεις είναι στατιστικά σημαντικές στο 1% και μάλιστα παρουσιάζουν όλες πολύ υψηλή συσχέτιση.

Τα αποτελέσματα έδειξαν ότι βρήκε σύμφωνους το 76% από τους συμμετέχοντες η τεχνολογική ανησυχία πως μια πλατφόρμα για την επίλυση τεχνικών ζητημάτων βρίσκεται ακόμη σε αρχικό στάδιο ανάπτυξης, ενώ το 20% ήταν ουδέτεροι ως προς την συγκεκριμένη παραδοχή. Επίσης, οι ανησυχίες σχετικά με τους περιορισμούς διαστήματος στα πλοία για παράδειγμα στις μεγαλύτερες δεξαμενές δείχνουν να απασχολούν την πλειονότητα των stakeholders, με ποσοστό 84% ενώ παρόμοιες παραδοχές σχετικά με την παραδοχή που είχε να κάνει με ζητήματα που έχουν να κάνουν με την μετασκευή πλοίων για τα υφιστάμενα πλοία ύστερα να λειτουργούν με αυτού του είδους τα καύσιμα

Πίνακας 4.18: Οι συσχετίσεις των τεχνολογικών προκλήσεων με την PU

<table>
<thead>
<tr>
<th>TECHNOLOGICAL CHALLENGES (TC)</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TC-1) A platform for Pearson Correlation addressing technical issuesSig. (2-tailed)</td>
<td>-0.725**</td>
</tr>
<tr>
<td>is still in its infancy</td>
<td>N</td>
</tr>
</tbody>
</table>

- 83 -
Συντριπτικό ποσοστό συγκέντρωσαν οι ανησυχίες για την Κυψέλη Καυσίμου που βρίσκεται ακόμα σε πρώιμο στάδιο, όπως φαίνεται στον παρακάτω Πίνακα. Σαράντα οχτώ (48) άτομα από τα πενήντα (50) συμφώνησαν με την παραπάνω παραδοχή, οι μισοί «Συμφώνησαν Απόλυτα» και οι άλλοι μισοί επίσης απάντησαν «Συμφωνώ», ενώ μόλις ένα 4% διαφώνησε.

Πίνακας 4.19: Η Κυψέλη Καυσίμου που βρίσκεται ακόμα σε πρώιμο στάδιο, προκαλεί ανησυχία στους συμμετέχοντες

<table>
<thead>
<tr>
<th>(TC-2) Concerns about space limitations (larger tanks)</th>
<th>Pearson Correlation</th>
<th>-0.712**</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>(TC-3) Concerns about ship design issues to the existing vessels</td>
<td>Pearson Correlation</td>
<td>-0.609**</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>(TC-4) Fuel cell Technology for ships is still in its infancy</td>
<td>Pearson Correlation</td>
<td>-0.606**</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>(TC-5) Alternative Fuels might not perform well and create problems</td>
<td>Pearson Correlation</td>
<td>-0.794**</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>(TC-6) I am worried about technological system failures</td>
<td>Pearson Correlation</td>
<td>-0.764**</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).
Αξίζει να σημειωθεί πως σε συνάρτηση με τις προαναφερθείσες ανησυχίες, έρχεται να προστεθεί η ανησυχία ότι τα εναλλακτικά καύσιμα ενδέχεται να μην λειτουργήσουν καλά και να δημιουργήσουν πρόβλημα, με ένα σημαντικό βέβαια ποσοστό (32%) να διαφωνεί, όπως φαίνεται στον Πίνακα 4.20. Τέλος, η ανησυχία σχετικά με τις αποτυχίες του τεχνολογικού συστήματος των δύο ναυτιλιακών καυσίμων είναι ένα ζήτημα που το 46% των συμμετεχόντων συμφώνησε απόλυτα, αλλά υπήρχε επίσης ένα σημαντικό ποσοστό (34%) που δεν πήρε θέση και έμεινε ουδέτερο στην συγκεκριμένη παραδοχή.

Πίνακας 4.20: Η ανησυχία των συμμετεχόντων ότι τα εναλλακτικά καύσιμα ενδέχεται να μην λειτουργήσουν καλά
Η Διαθεσιμότητα έχει επίσης αρνητικό αντίκτυπο στην Αντυλαμβανόμενη Χρησιμότητα των δύο καυσίμων πρόωσης που εξετάζουμε. Στον Πίνακα 4.21, παρουσιάζεται η ανάλυση της σχέσης της Διαθεσιμότητας με την μεταβλητή ελέγχου. Παρατηρούμε και εδώ, πως όλες οι σχέσεις είναι στατιστικά σημαντικές στο 1% και μάλιστα παρουσιάζουν όλες πολύ υψηλή συσχέτιση. Επίσης, τα αποτελέσματα έδειξαν ότι στην συγκεκριμένη μεταβλητή της Διαθεσιμότητας, δεν υπήρχε ξεκάθαρη εικόνα, εφόσον οι γνώμες διίστανταν. Αναλυτικά,

Πίνακας 4.21: Οι συσχέτισες της διαθεσιμότητας με την PU

<table>
<thead>
<tr>
<th>AVAILABILITY (AVL)</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AVL-1) There is a limited production capacity of these Alternative Fuels</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>(AVL-2) I think Alternative Fuels will have poor stability</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>(AVL-3) Limited Availability is worrying (chicken-and-egg problem)</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>(AVL-4) If Alternative Fuels become so attractive, will not be available in sufficient quality</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>(AVL-5) There are gaps regarding quality standards for Alternative Fuels</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>
**. Correlation is significant at the 0.01 level (2-tailed).

Αυτό που παρουσιάζει ιδιαίτερο ενδιαφέρον και παρουσιάζει μεμονωμένα τη δεύτερη πιο σημαντική συσχέτιση στο πλαίσιο της μεταβλητής της Διαθεσιμότητας είναι ότι ενώ το μεγαλύτερο ποσοστό των συμμετεχόντων (34%) απάντησε πως διαφωνεί με την παραδοχή πως υπάρχει περιορισμένη δυνητική παραγωγή αυτών των εναλλακτικών καυσίμων, στη συνολική εικόνα φαίνεται πως ένα 52% συμφωνεί με την συγκεκριμένη παραδοχή, όπως φαίνεται στον παρακάτω Πίνακα. Σε παρόμοιο ζήτημα, μεγάλο μέρος των συμμετεχόντων, σε επίπεδο 56% θεωρούν πως εάν τα συγκεκριμένα εναλλακτικά καύσιμα γίνουν τόσο ελκυστικά, δεν θα είναι διαθέσιμα σε επαρκή ποιότητα αλλά υπήρχε ένα σημαντικό ποσοστό, της τάξεως 22% που «Διαφώνησε Απόλυτα» με την παραπάνω παραδοχή που δείχνει μια σημαντική αντίθεση.

Πίνακας 4.22: Οι stakeholders πιστεύουν ότι υπάρχει διαθεσιμότητα των συγκεκριμένων εναλλακτικών καυσίμων

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>30,0</td>
<td>30,0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>22,0</td>
<td>52,0</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12,0</td>
<td>64,0</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>34,0</td>
<td>98,0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Παρόμοια ποσοστά έδειξαν τα αποτελέσματα για ζητήματα που έχουν να κάνουν με την κακή σταθερότητα των εναλλακτικών καυσίμων, όπου ένα ποσοστό 36% συμφωνήσει απόλυτα, ένα 16% συμφώνησε και ένα 30% διαφώνησε με την συγκεκριμένη παραδοχή, ενώ τα κενά στα πρότυπα ποιότητας για τα εναλλακτικά καύσιμα βρήκε σύμφωνους συνολικά το 56% ενώ αντίθετους το 30%. Το υπόλοιπο 14% έμεινε ουδέτερο ως προς - 87 -
τη συγκεκριμένη παραδοχή. Επίσης, το γνωστό ανησυχητικό ζήτημα «Της κότας και του αυγού» φάνηκε επίσης να βρίσκει σύμφωνους απόλυτα το 34% του δείγματος, αντίθετους το 22% αλλά και ένα σημαντικό ποσοστό, της τάξεως του 28% φαίνεται να μην γνωρίζει περί του θέματος και να μένει ουδέτερο. Όλα αυτά τα αποτελέσματα, αιτιολογούν την αρνητική επίδραση της Διαθεσιμότητας στην Αντιλαμβανόμενη Χρησιμότητα.

Πίνακας 4.23: Το πρόβλημα της “κότας και του αυγού” προκαλεί ανησυχία σχετικά με την διαθεσιμότητα.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>34,0</td>
<td>34,0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>10,0</td>
<td>44,0</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>28,0</td>
<td>72,0</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>22,0</td>
<td>94,0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Επιπλέον, η Αντιλαμβανόμενη Χρησιμότητα (PU) βρέθηκε να επηρεάζεται σημαντικά από τη μεταβλητή των Υποδομών (INF) (-0.686, P <0.001) και της Οικονομικής και Χρηματοοικονομικής Ανησυχίας (E & F) (-0.404, P <0.001) που αφορούν τις υποθέσεις H8-1 και H10-1 αντίστοιχα.

Το ζήτημα των Υποδομών, δείχνει σημαντική συσχέτιση με αρνητικό αντίκτυπο στην Αντιλαμβανόμενη Χρησιμότητα των LNG και ηλεκτρικής ενέργειας. Στον Πίνακα 4.24, παρατίθενται τα αποτελέσματα από τη διερεύνηση της σχέσης των Υποδομών με την μεταβλητή ελέγχου. Παρατηρούμε, πως δύο από τις πέντε είναι στατιστικά σημαντικές στο 1% και μία είναι στατιστικά σημαντική στο 5%.
Πίνακας 4.24: Οι συσχετίσεις των Υποδομών με την PU

<table>
<thead>
<tr>
<th>Υποδομές (INF)</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF-1) Οι συσχετίσεις των Υποδομών με την PU είναι αναγκαίες για την επιτυχία της</td>
<td></td>
</tr>
<tr>
<td>INF-2) Η απόκτηση των Υποδομών είναι αναγκαία για την επιτυχία της</td>
<td></td>
</tr>
<tr>
<td>INF-3) Τα συστατικά των Υποδομών είναι αναγκαία για την επιτυχία της</td>
<td></td>
</tr>
<tr>
<td>INF-4) Η επιτυχία της επικοινωνίας απαιτεί την υποστήριξη των Υποδομών</td>
<td></td>
</tr>
<tr>
<td>INF-5) Τα συστατικά των Υποδομών είναι αναγκαία για την επιτυχία της</td>
<td></td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Τα αποτελέσματα στην συγκεκριμένη μεταβλητή των Υποδομών, παρουσιάζουν μεγάλο ενδιαφέρον γιατί παρουσιάζουν μεγάλη ομοφωνία. Αρχικά, σχεδόν όλοι οι συμμετέχοντες στο επίπεδο του 98% συμφώνησε ότι η έλλειψη υποδομών μπορεί να
δημιουργήσει εμπόδια στην αλυσίδα εφοδιασμού εναλλακτικών καυσίμων, όπως φαίνεται στον Πίνακα 4.25. Μάλιστα, το 80% των συμμετεχόντων «Συμφώνησε Απόλυτα» με την συγκεκριμένη παραδοχή γεγονός που δείχνει την επιτακτική ανάγκη για εγκατάσταση Υποδομών.

Πίνακας 4.25: Η έλλειψη υποδομών δημιουργεί προβλήματα στην αλυσίδα εφοδιασμού εναλλακτικών καυσίμων

<table>
<thead>
<tr>
<th>(INF) Lack of Infrastructure can create barriers in the supply chain of Alternative fuels</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2.0</td>
<td>2.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18.0</td>
<td>18.0</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>80.0</td>
<td>80.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>

Επίσης, ένα ζήτημα το οποίο παρουσιάζει τη μεγαλύτερη συσχέτιση σε αυτή τη μεταβλητή και το οποίο οι συμμετέχοντες δεν παρουσίασαν καθολική εικόνα είναι για το οι χρήστες θα είναι σε θέση να ανεφοδιάζουν εύκολα τα πλοία τους. Παρόλο, που ένα σημαντικό ποσοστό, 46%, συμφώνησαν απόλυτα στην παραδοχή, όπως φαίνεται στον παρακάτω Πίνακα, ένα άλλο σημαντικό ποσοστό, της τάξεως του 34% διαφώνησε, οπότε καταλαβαίνουμε πως υπάρχει διχασμός για το συγκεκριμένο ζήτημα.

Πίνακας 4.26: Υπάρχει αβεβαιότητα για το αν ο χρήστης θα μπορεί να ανεφοδιάζει εύκολα τα πλοία του
Επιπλέον, τα αποτελέσματα δείχνουν ότι όλοι οι συμμετέχοντες εκτός από ένα άτομο που διαφώνησε, συμφώνησαν πως υπάρχει ανάγκη για συγκεκριμένη τυποποίηση απαιτήσεων για εγκαταστάσεις ανεφοδιασμού LNG, για την παροχή ηλεκτρικών υποδομών σε όλους τους τύπους λιμένων και υποδομές για cold ironing σε τερματικούς σταθμούς. Αυτή σχέση είναι στατιστικά σημαντική στο 5%.

Πίνακας 4.27: Οι συμμετέχοντες θεωρούν επιτακτική την τυποποίηση για εγκαταστάσεις ανεφοδιασμού LNG
Τέλος, όλοι οι συμμετέχοντες συμφώνησαν πως θα πρέπει η ηλεκτρική υποδομή να φιλοξενεί όλα τα είδη θυρών καθώς και ότι η υποδομή για cold ironing στα θαλάσσια τερματικά (λιμάνια) είναι σοφή κίνηση (Πίνακας 4.28 και 4.29 αντίστοιχα).

Πίνακας 4.28: Η ηλεκτρική υποδομή πρέπει να φιλοξενεί όλα τα είδη θυρών

<table>
<thead>
<tr>
<th>(INF) Electrical infrastructure needs to accommodate all kinds of ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Valid</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Πίνακας 4.29: Η υποδομή για cold ironing στα λιμάνια είναι σοφή κίνηση

<table>
<thead>
<tr>
<th>(I) The infrastructure for cold ironing at marine terminals is wise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Valid</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Το ζήτημα των Οικονομικών και Χρηματοοικονομικών Ανησυχιών, δείχνει επίσης σημαντική συσχέτιση με αρνητικό αντίκτυπο στην Αντιλαμβανόμενη Χρησιμότητα των δύο ναυτιλιακών καυσίμων, του LNG και της ηλεκτρικής ενέργειας. Στον Πίνακα 4.30, παρατίθενται τα αποτελέσματα από τη διερεύνηση της σχέσης της ανεξάρτητης
μεταβλητής με την εξαρτημένη μεταβλητή. Παρατηρούμε, πως δύο από τις πέντε είναι στατιστικά σημαντικές στο 1% και μία είναι στατιστικά σημαντική στο 5%. Πιο αναλυτικά,

Πίνακας 4.30: Οι συσχετίσεις των οικονομικών και χρηματοοικονομικών ανησυχιών με την PU

<table>
<thead>
<tr>
<th>ECONOMIC & FINANCIAL CONCERNS (E&F)</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E&F-1) Alternative Fuels Pearson Correlation lead to financial loss for me</td>
<td>-.460**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.001</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>(E&F-2) Alternative Fuels Pearson Correlation creates a positive budget</td>
<td>.008</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.958</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>(E&F-3) Alternative Fuels Pearson Correlation have higher operating costs</td>
<td>-.420**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.002</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>(E&F-4) I think that Pearson Correlation capital costs (infrastructure, new vessels) is a huge investment</td>
<td>-.358*</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.011</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>(E&F-5) The initial Pearson Correlation investment required is enormous</td>
<td>.092</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.525</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
</tr>
</tbody>
</table>
Τα αποτελέσματα δείχνουν ότι η πλειονότητα των ερωτηθέντων δεν γνωρίζει αν τα εναλλακτικά καύσιμα που αποτελούν αντικείμενο μελέτης θα τους οδηγήσει σε οικονομικές ζημίες όπως φαίνεται στον παρακάτω πίνακα και έπειτα οι γνώμες διίστανται. Παρόλα αυτά, η μεγαλύτερη πλειονότητα, σε επίπεδο 62% πιστεύουν ότι τα συγκεκριμένα εναλλακτικά καύσιμα θα τους δημιουργήσουν θετικό προϋπολογισμό, παρόλο που και εδώ ένα μεγάλο ποσοστό των συμμετεχόντων (34%), δεν γνωρίζει και κρατάει ουδέτερη στάση.

Πίνακας 4.31: Υπάρχει έλλειψη γνώσης για το αν η χρήση εναλλακτικών καύσιμων μπορεί να προκαλέσει οικονομικές ζημίες στους stakeholders
Επιπρόσθετα, η πλειοψηφία των συμμετεχόντων (78%) θεωρεί ότι τα εναλλακτικά καύσιμα έχουν υψηλότερο λειτουργικό κόστος, το 90% των συμμετεχόντων πιστεύει ότι το κόστος κεφαλαίου (για υποδομές, νέα πλοία) είναι τεράστιες επενδύσεις (βλέπε Πίνακα 4.32) και το 68% των συμμετεχόντων θεωρεί ότι η απαιτούμενη αρχική επένδυση (συστήματα πρόωσης, συστήματα διαχείρισης καυσίμων) είναι τεράστια. Όλα αυτά τα αποτελέσματα είχαν σαν αποτέλεσμα να σημειώνει σημαντική συσχέτιση με αρνητική επίδραση η συγκεκριμένη μεταβλητή.

Πίνακας 4.32: Για το κόστος κεφαλαίου για υποδομές και πλοία τροφοδοτούμενα με τα εναλλακτικά καύσιμα απαιτείται τεράστια επένδυση

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>66.0</td>
<td>66.0</td>
<td>66.0</td>
</tr>
<tr>
<td>12</td>
<td>24.0</td>
<td>24.0</td>
<td>90.0</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>4.0</td>
<td>94.0</td>
</tr>
<tr>
<td>3</td>
<td>6.0</td>
<td>6.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Στην μεταβλητή Συμβατότητα, βρέθηκε σημαντική συσχέτιση τόσο στην Αντιλαμβανόμενη Χρησιμότητα (PU) (456 p <0.001) όσο και στην
Αντιλαμβανόμενη Ευκολία Χρήσης (PEU) (.476 p <0.001) που βρέθηκαν να επηρεάζονται σημαντικά και οι δύο από τη Συμβατότητα, επιβεβαιώνοντας τις υποθέσεις H2-1 και H2-2 αντίστοιχα. Η Συμβατότητα έχει θετικό αντίκτυπο και στις δύο μεταβλητές ελέγχου και στον Πίνακα 4.33, παρατίθενται τα αποτελέσματα από τη διερεύνηση της σχέσης της συγκεκριμένης μεταβλητής με τις 2 εξαρτημένες μεταβλητές. Παρατηρούμε, ότι στην Αντιλαμβανόμενη Χρησιμότητα, υπάρχουν τρεις (3) σχέσεις που είναι στατιστικά σημαντικές στο 1% και άλλη μια (1) που είναι στατιστικά σημαντική στο 5%. Στην Αντιλαμβανόμενη Ευκολία Χρήσης, παρατηρούμε αντίστροφα, μια (1) μεταβλητή να είναι στατιστικά σημαντική στο 1% και άλλες τρεις (3) να είναι στατιστικά σημαντικές στο 5%. Οι 3 σχέσεις μόνο της μεταβλητής παρουσιάζει σημαντική συσχέτιση και στις δύο μεταβλητές ελέγχου.

Πίνακας 4.33: Οι συσχετίσεις της συμβατότητας με την PU και την PEU

<table>
<thead>
<tr>
<th>COMPARABILITY (CPT)</th>
<th>PU</th>
<th>PEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CPT-1) Using Alternative Pearson Correlation Fuels would be compatible with the most aspects of my Maritime Activities Ν</td>
<td>.511**</td>
<td>.556**</td>
</tr>
<tr>
<td>(CPT-2) Alternative Fuels Pearson Correlation would be compatible with my Maritime needs Ν</td>
<td>.373**</td>
<td>.325*</td>
</tr>
<tr>
<td>(CPT-3) LGN is compatible with other systems/ services i use Ν</td>
<td>-.213</td>
<td>.311*</td>
</tr>
<tr>
<td>(CPT-4) Electricity is compatible with other systems/ services i use Ν</td>
<td>.303*</td>
<td>.133</td>
</tr>
</tbody>
</table>

- 96 -
(CPT-5) Alternative Fuels Pearson Correlation

are interoperable with Sig. (2-tailed)
other systems of existing N
vessels N

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Valid</td>
<td>3</td>
<td>25.0</td>
<td>50.0</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>20.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Πίνακας 4.34: Υπάρχει αβεβαιότητα σχετικά με τη χρήση αυτών των δύο εναλλακτικών καυσίμων και της συμβατότητάς με τις ναυτιλιακές δραστηριότητες των εμπλεκόμενων φορέων.
Επίσης, το μεγαλύτερο ποσοστό των συμμετεχόντων έδειξε να μην γνωρίζει αν τα δύο εναλλακτικά καύσιμα θα είναι συμβατά με άλλα συστήματα / υπηρεσίες που χρησιμοποιούν. Σχετικά με το LNG, οι συμμετέχοντες φάνηκε με ένα μικρό προβάδισμα (συνολικά 40%) να θεωρεί πως είναι συμβατό με άλλα συστήματα υπηρεσίες, αλλά να ακολουθεί ένα μεγάλο μέρος των συμμετεχόντων (36%) που φάνηκε να μην γνωρίζει και να ακολουθεί με ένα αρκετά μεγάλο ποσοστό (24%) τα άτομα που διαφώνησαν με την παραπάνω παραδοχή. Για την ηλεκτρική ενέργεια, υπήρχαν παρόμοια αποτελέσματα καθώς η πλειονότητα των συμμετεχόντων (44%) έδειξε να συμφωνεί με την παραδοχή αυτή, να ακολουθεί πάλι ένα σημαντικό ποσοστό (30%) που έμειναν ουδέτεροι και να ακολουθούν τα άτομα που διαφωνούν με ποσοστό 22%. Επιπλέον, είναι πολύ σημαντικό να τονιστεί πως οι περισσότεροι από τους συμμετέχοντες (32%) απάντησαν ότι συμφωνούν απόλυτα ότι αυτά τα εναλλακτικά καύσιμα, το LNG και η ηλεκτρική ενέργεια είναι δια λειτουργικά με άλλα συστήματα των υφιστάμενων πλοίων.

Πίνακας 4.35: Το LNG και η ηλεκτρική ενέργεια διαπιστώνονται πως είναι δια λειτουργικά με άλλα συστήματα των υφιστάμενων πλοίων.

<table>
<thead>
<tr>
<th>Alternative Fuels are interoperable with other systems of existing vessels</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>16</td>
<td>32.0</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13</td>
<td>26.0</td>
<td>58.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>14</td>
<td>28.0</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7</td>
<td>14.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Η δεύτερη εξαρτημένη μεταβλητή που εξετάζουμε, σύμφωνα με το μοντέλο της Αποδοχής της Τεχνολογίας, η Αντιλαμβανόμενη Ευκολία Χρήσης (PEU) βρέθηκε να επηρεάζεται σημαντικά από δυο εξωγενείς παράγοντες με θετική επίδραση: το Σχετικό Πλεονέκτημα (RAD) (, 613, P <0.001) και την Δοκιμασία (TR) (485, P <0.001) υποστηρίζοντας τις υποθέσεις H1-2, H5-2, αντίστοιχα. Οι υποθέσεις αυτές επιβεβαιώθηκαν.

Συγκεκριμένα, το Σχετικό Πλεονέκτημα των εναλλακτικών καυσίμων έχει θετικό αντίκτυπο στην Αντιλαμβανόμενη Ευκολία Χρήσης των δύο ναυτιλιακών καυσίμων, του LNG και της ηλεκτρικής ενέργειας. Στον Πίνακα 4.36, βρίσκονται οι συσχετίσεις της ανεξάρτητης μεταβλητής με την μεταβλητή ελέγχου. Παρατηρούμε ότι τρεις σχέσεις από τις πέντε είναι στατιστικά σημαντικές στο 1%. Αναλυτικά,

Πίνακας 4.36: Οι συσχετίσεις του σχετικού πλεονέκτημα με την PEU

<table>
<thead>
<tr>
<th>RELATIVE ADVANTAGE (RAD)</th>
<th>PEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RAD-1) Alternative Fuels are sustainable (reduce emissions)</td>
<td>Pearson Correlation 0.103 N 50</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) 0.477</td>
</tr>
<tr>
<td>(RAD-2) Alternative Fuels are suitable for upcoming legislation</td>
<td>Pearson Correlation 0.511** N 50</td>
</tr>
<tr>
<td>(IMO 2020)</td>
<td>Sig. (2-tailed) 0.000</td>
</tr>
<tr>
<td>(RAD-3) Alternative Fuels offer environmental benefits</td>
<td>Pearson Correlation 0.127 N 50</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) 0.379</td>
</tr>
<tr>
<td>(RAD-4) It is asserted that alternative fuels are reliable</td>
<td>Pearson Correlation 0.864** N 50</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) 0.000</td>
</tr>
</tbody>
</table>
Σχεδόν όλα τα ενδιαφερόμενα μέρη της ναυτιλιακής βιομηχανίας στην Ελλάδα, θεωρούν πως τα εναλλακτικά καύσιμα LNG και ηλεκτρική ενέργεια είναι βιώσιμα (μειώνουν τις εκπομπές) με το ποσοστό να ανέρχεται στο 92% και παρέχουν περιβαλλοντικά οφέλη, με ποσοστό 94%. Έπειτα, ένα σημαντικό ποσοστό από τους συμμετέχοντες (78%) θεωρούν ότι είναι κατάλληλα για την επικείμενη νομοθεσία (IMO 2020) καθώς επίσης η πλειονότητα των συμμετεχόντων (30%) θεωρεί ότι αυξάνουν την ενεργειακή ασφάλεια. Επίσης, υποστηρίζουν ότι τα εναλλακτικά καύσιμα είναι αξιόπιστα, όπως φαίνεται στον παρακάτω Πίνακα. Όλες αυτές οι σχέσεις δείχνουν την αναγνώριση του σχετικού πλεονέκτηματος των συγκεκριμένων εναλλακτικών καυσίμων έναντι της τρέχουσας τεχνολογίας (MGO).

Πίνακας 4.37: Τα εναλλακτικά καύσιμα υποστηρίζονται πως είναι αξιόπιστα
Η Δοκιμασία των εναλλακτικών καυσίμων, η δυνατότητα δηλαδή της δοκιμαστικής χρήσης έχει θετική επίδραση επίσης στην Αντιλαμβανόμενη Ευκολία Χρήσης των δύο ναυτιλιακών καυσίμων, του LNG και της ηλεκτρικής ενέργειας. Στον Πίνακα 4.38, βρίσκονται οι συσχετίσεις της Δοκιμασίας με την μεταβλητή ελέγχου. Παρατηρούμε ότι τέσσερις (4) σχέσεις από τις πέντε είναι στατιστικά σημαντικές στο 1%. Αναλυτικά,

Πίνακας 4.38: Οι συσχετίσεις της δοκιμασίας με την PEU

<table>
<thead>
<tr>
<th>TRIALABILITY (TR)</th>
<th>PEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TR-1) A trial would convince me that using Sig. (2-tailed) Alternative Fuels are better than other N</td>
<td>0.085</td>
</tr>
<tr>
<td>(TR-2) It is easy for me to find the usage information Sig. (2-tailed)</td>
<td>0.367</td>
</tr>
</tbody>
</table>
of Alternative Fuels N 50
(TR-3) I can try any kind Pearson Correlation .394**
of function before using Sig. (2-tailed) .005
Alternative Fuels N 50
officially
(TR-4) I can quit it if I am Pearson Correlation .488**
not satisfied after trying Sig. (2-tailed) .000
Alternative Fuels N 50
(TR-5) Alternative Fuels Pearson Correlation .473**
have accumulated some Sig. (2-tailed) .001
good testing results N 50
PEU Pearson Correlation 1
Sig. (2-tailed) .001
N 50

**. Correlation is significant at the 0.01 level (2-tailed).

The results showed that the majority of the respondents believe that the testing would have a significant positive impact on the control variable as it is significant before the decision for adoption as well as the specific fuels have accumulated some good testing results outside. Also, many respondents agreed that it is easy for them, the stakeholders, to find information about the use of the two alternative fuels, as shown in Table 4.39.

Table 4.39: There is a possibility of communication of the results of the two alternative fuels

Πίνακας 4.39: Υπάρχει δυνατότητα επικοινωνίας των αποτελεσμάτων των δύο εναλλακτικών καυσίμων

- 102 -
Επιπλέον, εντυπωσιακό είναι το γεγονός πως υπάρχει διχασμός στα ενδιαφερόμενα μέρη σχετικά με το αν μπορούν να τα εγκαταλείψουν αμέσως μετά τη χρήση τους. Παρατηρούμε ότι τα άτομα που συμφώνησαν συνολικά μαζί με τα άτομα που διαφώνησαν συνολικά σε αυτή την παραδοχή παρουσιάζουν ίδιο ποσοστό (38%). Σημαντικό ποσοστό (24%) παρουσιάζουν και τα άτομα που δεν γνωρίζουν και κράτησαν ουδέτερη στάση. Πάντως, η πλειονότητα των συμμετεχόντων θεωρεί πως δεν δύναται να δοκιμάσουν οποιαδήποτε λειτουργία πριν χρησιμοποιήσουν επίσημα τα εναλλακτικά καύσιμα.

Πίνακας 4.40: Η χρήση των εναλλακτικών καυσίμων φέρνει διχασμό στην δυνατότητα εγκαταλείψης τους

| (TR) It is easy for me to find the usage information of Alternative Fuels |
|-----------------|-------|---------|-----------|-----------|
| Frequency | Percent | Valid Percent | Cumulative Percent |
| Valid 1 | 2 | 4,0 | 4,0 | 4,0 |
| 2 | 35 | 70,0 | 70,0 | 74,0 |
| 3 | 8 | 16,0 | 16,0 | 90,0 |
| 4 | 4 | 8,0 | 8,0 | 98,0 |
| 5 | 1 | 2,0 | 2,0 | 100,0 |
| Total | 50 | 100,0 | 100,0 |
Επιπλέον, η Αντιλαμβανόμενη Ευκολία Χρήσης (PEU) βρέθηκε να επηρεάζεται σημαντικά με θετικό αντίκτυπο από την Πολιτική Διακυβέρνηση (GP) (, 381, P <0.001) και τους Κανονισμούς Λιμένων (PR) (, 480, P <0,001) υποστηρίζοντας τις υποθέσεις H7-2 και H11-2.

Η Πολιτική Διακυβέρνηση έχει θετικό αντίκτυπο στην Αντιλαμβανόμενη Ευκολία Χρήσης των δύο εναλλακτικών καυσίμων, του LNG και της ηλεκτρικής ενέργειας. Στον Πίνακα 4.41, παρατίθενται τα αποτελέσματα από τις συσχέτισεις της Πολιτικής Διακυβέρνησης του δείγματος με την μεταβλητή ελέγχου. Παρατηρούμε ότι δύο από τις σχέσεις είναι στατιστικά σημαντικές στο 1% και άλλες δύο είναι στατιστικά σημαντικές στο 5%

Πίνακας 4.41: Οι συσχετίσεις της κυβερνητικής πολιτικής με την PEU

<table>
<thead>
<tr>
<th>GOVERNANCE POLICY (GP)</th>
<th>PEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GP-1) Integration and adaptation of the international legal framework for Alternative Fuels is necessary</td>
<td>.469**</td>
</tr>
<tr>
<td>the international legal framework for</td>
<td>.001</td>
</tr>
<tr>
<td>PEU</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>
(GP-2) A long-term policy framework should favour Alternative Fuels

<table>
<thead>
<tr>
<th></th>
<th>Pearson Correlation</th>
<th>Sig. (2-tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.297*</td>
<td>.036</td>
<td>50</td>
</tr>
</tbody>
</table>

(GP-3) Integrated strategies are required to ensure Alternative Fuels

<table>
<thead>
<tr>
<th></th>
<th>Pearson Correlation</th>
<th>Sig. (2-tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.633**</td>
<td>.000</td>
<td>50</td>
</tr>
</tbody>
</table>

(GP-4) A Regulatory timeline towards 2030 is needed

<table>
<thead>
<tr>
<th></th>
<th>Pearson Correlation</th>
<th>Sig. (2-tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.141</td>
<td>.327</td>
<td>50</td>
</tr>
</tbody>
</table>

(GP-5) Policies need to encourage the further improvement of the fuel efficiency

<table>
<thead>
<tr>
<th></th>
<th>Pearson Correlation</th>
<th>Sig. (2-tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-.306*</td>
<td>.031</td>
<td>50</td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

The results showed that the large majority of participants (78%) believe that the integration and adaptation of the international legal framework for alternative fuels is necessary, as well as how a long-term policy framework should support alternative fuels (82%) and how integrated strategies are needed to ensure alternative fuels (82%). Special interest is shown by nearly all participants (94%) that policies need to encourage the further improvement of the fuel efficiency as shown in the following table and also...
σημαντικό ποσοστό των συμμετεχόντων (78%) πιστεύει πως απαιτείται ένα ρυθμιστικό χρονοδιάγραμμα προς το 2030.

Πίνακας 4.42: Οι πολιτικές πρέπει να ενθαρρύνουν την βελτίωση της αποδοτικότητας των δύο τεχνολογιών

<table>
<thead>
<tr>
<th>(GP) Policies need to encourage the further improvement of the fuel efficiency</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20.0</td>
<td>20.0</td>
<td>94.0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4.0</td>
<td>4.0</td>
<td>98.0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2.0</td>
<td>2.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Ενώ οι Κανονισμοί Λιμένων περιορίζονται στη βιβλιογραφία, τα αποτελέσματα δείχνουν ότι έχουν σημαντικό θετικό αντίκτυπο στην Αντιλαμβανόμενη Ευκολία Χρήσης των δύο ναυτιλιακών καυσίμων ως μεσολαβητής. Στον Πίνακα 4.43, παρατίθενται τα αποτελέσματα από τις συσχέτισεις των Κανονισμών Λιμένων του δείγματος με την μεταβλητή ελέγχου. Παρατηρούμε ότι δύο από τις σχέσεις είναι στατιστικά σημαντικές στο 1%.

Πίνακας 4.43: Οι συσχέτισεις των κανονισμών λιμένων με την PEU

<table>
<thead>
<tr>
<th>PORT REGULATIONS (PR)</th>
<th>PEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PR-1) Ports can set rules, Pearson Correlation addressing specific operational aspects</td>
<td>0.695**</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
</tr>
</tbody>
</table>
(PR-2) Port Authorities should support the deployment of Alternative Fuels for shipping. Pearson Correlation: 0.087, Sig. (2-tailed): 0.547, N: 50

(PR-3) Port Services should be flexible to interact with international guidelines of Alternative fuels. Pearson Correlation: 0.651**, Sig. (2-tailed): 0.000, N: 50

(PR-4) The Port Authorities should incorporate alternative fuels. Pearson Correlation: -0.233, Sig. (2-tailed): 0.103, N: 50

PEU

Pearson Correlation: 1, Sig. (2-tailed): 0.000, N: 50

**. Correlation is significant at the 0.01 level (2-tailed).

The results showed that the stakeholders of the sample, in the Greek shipping industry, give a significant weight to the role of ports, as shown in the table, overall 84% of the participants believe that ports can set rules and address specific operational aspects.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>34.0</td>
<td>34.0</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>50.0</td>
<td>84.0</td>
</tr>
</tbody>
</table>
Επίσης, είναι εντυπωσιακό το 60% των συμμετεχόντων που «Συμφώνησε Απόλυτα» στο ότι οι λιμενικές αρχές θα πρέπει να υποστηρίζουν την ανάπτυξη εναλλακτικών καυσίμων για τη ναυτιλία όπως επίσης ένα 64% από τους συμμετέχοντες «Συμφώνησε Απόλυτα» ότι θα πρέπει να ενσωματωθούν εναλλακτικά κάυσιμα από τις λιμενικές αρχές. Τέλος, η πλειονότητα των συμμετέχοντων συνολικά (88%) θεωρεί πως οι Λιμενικές Υπηρεσίες πρέπει να είναι ευέλικτες ώστε να αλληλοεπιδρούν με τις διεθνείς κατευθυντήριες γραμμές των εναλλακτικών καυσίμων.

Πίνακας 4.45: Οι Λιμενικές Υπηρεσίες πρέπει να είναι ευέλικτες με τις διεθνείς κατευθυντήριες γραμμές των εναλλακτικών καυσίμων

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>48.0</td>
<td>48.0</td>
<td>88.0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>12.0</td>
<td>12.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Τέλος, όσον αφορά την τελευταία ανεξάρτητη μεταβλητή, την Δημόσια Εμπιστοσύνη, τα αποτελέσματα έδειξαν ότι δεν υπάρχει ουσιαστική επίδραση στα θέματα δημόσιας εμπιστοσύνης ως προς τη μελλοντική αντίθεση στις υποδομές ή αν υπάρχει μεγάλη

- 108 -
αβεβαιότητα σχετικά με τη χρήση εναλλακτικών καυσίμων. Συνολικά, τα αποτελέσματα δείχνουν ότι οι ερωτώμενοι εμπιστεύονται τα εναλλακτικά καύσιμα και δεν αντιτίθενται στη χρήση τους.

Επιπλέον, αυτά τα ευρήματα επιβεβαίωσαν την υπάρχουσα έρευνα, η οποία, όπως αρχικά προτάθηκε από τους Davis et al. (1989), βρήκε ισχυρή σχέση μεταξύ της Αντιλαμβανόμενης Χρησιμότητας και της Αντιλαμβανόμενης Ευκολία Χρήσης. Οι δύο παράγοντες ελέγχου στο μοντέλο θεωρούντα σημαντικοί παράγοντες για τον προσδιορισμό της αποδοχής του LNG και της ηλεκτρικής ενέργειας ως εναλλακτικά καύσιμα στην Ελλάδα.

Η Αντιληπτή Χρησιμότητα παρουσιάζει θετικό αντίκτυπο στην Αντιλαμβανόμενη Ευκολία Χρήσης και αντίστοιχα, των δύο εναλλακτικών καυσίμων, του LNG και της ηλεκτρικής ενέργειας. Στον Πίνακα 4.46, παρατίθενται τα αποτελέσματα από τη διερεύνηση της σχέσης τους. Παρατηρούμε ότι στην Αντιλαμβανόμενη Χρήση δύο από τις τέσσερις σχέσεις είναι στατιστικά σημαντικές στο 1% και μία είναι στατιστικά σημαντική στο 5%. Στην Αντιλαμβανόμενη Ευκολία Χρήσης από τις πέντε σχέσεις η μία είναι στατιστικά σημαντική στο 1% και τρεις είναι στατιστικά σημαντικές στο 5%.

Πίνακας 4.46: Παρατηρείται ισχυρή σχέση μεταξύ των δύο παραγόντων ελέγχου, PU και PEU

- 109 -
Ιδιαίτερως ενδιαφέροντα ποσοστά εμφανίζουν οι σχέσεις του πρώτου παράγοντα ελέγχου, της Αντιλαμβανόμενης Χρησιμότητας. Από τις απαντήσεις των δυνητικών υιοθετούντων προκύπτει ότι η συντριπτική πλειοψηφία (90%) διαφώνησε ότι η ανάπτυξη των εναλλακτικών καυσίμων είναι σπατάλη πόρων καθώς και η χρήση εναλλακτικών καυσίμων θα βελτίωνε την αποτελεσματικότητα (38%), την απόδοση (34%) και την παραγωγικότητα (42%) της εταιρείας. Δεν υπήρχε συντριπτική πλειοψηφία γιατί αρκετά υψηλά ποσοστά σημειώθηκαν και στις αντίθετες απόψεις (20-22%). Επιπλέον, στην απόδοση το ίδιο ποσοστό (34%) σημειώθηκε στην ουδέτερότητα των ερωτώμενων. Συνολικά, και όπως φαίνεται παρακάτω, η πλειοψηφία (30%)
«Συμφώνησε Απόλυτα» πως θεωρούν χρήσιμη τη μετάβαση στην τεχνολογία των εναλλακτικών καυσίμων.

Πίνακας 4.47: Η συντριπτική πλειοψηφία θεωρούν χρήσιμη τη μετάβαση στα εναλλακτικά καύσιμα

<table>
<thead>
<tr>
<th>Overall, I find the technology transition to Alternative Fuels useful</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Valid</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Τα αποτελέσματα σχετικά με τα ζητήματα της Αντιλαμβανόμενης Ευκολία Χρήσης έδειξαν πως η πλειοψηφία των συμμετέχοντων, με ποσοστό 56%, «Διαφώνησε Απόλυτα» ότι η εξειδίκευση στα πλοία που θα τροφοδοτούνται με τα συγκεκριμένα εναλλακτικά καύσιμα θα είναι εύκολη, 70% συνολικά διαφώνησαν ότι θα είναι εύκολο να αποκτήσουν την τεχνογνωσία για τη χρήση των εναλλακτικών καυσίμων και 46% συνολικά διαφώνησαν στην πεποίθηση πως η αλληλεπίδραση με τα εναλλακτικά καύσιμα δεν απαιτούν ψυχική προσπάθεια. Παρόλ’ αυτά ιδιαίτερο ενδιαφέρον παρουσιάζει η πλειοψηφία (52%) που «Συμφώνησε Απόλυτα» πως συνολικά, βρίσκουν χρήσιμο να υιοθετήσουν τα εναλλακτικά καύσιμα.
Πίνακας 4.48: Οι συμμετέχοντες βρίσκουν χρήσιμη την υιοθέτηση του LNG και της ηλεκτρικής ενέργειας

Ο ερευνητικός στόχος ήταν να αναπτυχθεί ένα νέο αξιόπιστο υβριδικό μοντέλο που θα μπορεί να μετρήσει τη συμπεριφορική πρόθεση αποδοχής των ενδιαφερόμενων μερών να χρησιμοποιούν LNG και ηλεκτρική ενέργεια ως ναυτιλιακά καύσιμα. Η ανάλυση ήταν μια πρωτοποριακή προσπάθεια εφαρμογής της θεωρίας Διάχυσης της Καινοτομίας και εξωτερικών μεταβλητών που αφορούσαν τις δύο τεχνολογίες στους δύο καθοριστικούς παράγοντες του μοντέλου Αποδοχή της Τεχνολογίας (TAM). Τελικά, τα αποτελέσματα επιβεβαιώσαν το ερευνητικό μοντέλο και τις υποθέσεις.

Σύμφωνα με τη συσχέτιση του Παραρτήματος 1, συνολικά, 25 από τις 30 υποθέσεις έγιναν αποδεκτές από τα δεδομένα.

Πίνακας 4.49: Αποτελέσματα Ερευνητικών Υποθέσεων

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Path</th>
<th>Direction</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1-1</td>
<td>RAD → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>H1-2</td>
<td>RAD → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H2-1</td>
<td>CPT → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H2-2</td>
<td>CPT → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H3-1</td>
<td>CPX → PU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H3-2</td>
<td>CPX → PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H4-1</td>
<td>OB → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H4-2</td>
<td>OB → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H5-1</td>
<td>TR → PU</td>
<td>Positive</td>
<td>Rejected</td>
</tr>
<tr>
<td>H5-2</td>
<td>TR → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H6-1</td>
<td>SPR → PU</td>
<td>Negative</td>
<td>Rejected</td>
</tr>
<tr>
<td>H6-2</td>
<td>SPR → PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H7-1</td>
<td>GP → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H7-2</td>
<td>GP → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H8-1</td>
<td>INF → PU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H8-2</td>
<td>INF → PEU</td>
<td>Negative</td>
<td>Rejected</td>
</tr>
<tr>
<td>H9-1</td>
<td>B&E → PU</td>
<td>Positive</td>
<td>Rejected</td>
</tr>
<tr>
<td>H9-2</td>
<td>B&E → PEU</td>
<td>Positive</td>
<td>Rejected</td>
</tr>
<tr>
<td>H10-1</td>
<td>E&F → PU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H10-2</td>
<td>E&F → PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H11-1</td>
<td>PR → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H11-2</td>
<td>PR → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H12-1</td>
<td>TC → PU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H12-2</td>
<td>TC → PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H13-1</td>
<td>AVL → PU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H13-2</td>
<td>AVL → PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H14-1</td>
<td>PT → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H14-2</td>
<td>PT → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
</tbody>
</table>
4.4 Αξιοπιστία

Η αξιοπιστία αποτελεί βασικό στοιχείο στην αξιολόγηση του οργάνου μετρήσεων. Η αξιοπιστία αφορά την ικανότητα του οργάνου να μετρά με συνέπεια. Ένα όργανο δεν μπορεί να είναι έγκυρο αν δεν είναι αξιόπιστο. Το αλφά του Cronbach, το ευρύτερα χρησιμοποιούμενο αντικειμενικό μέτρο αξιοπιστίας, υπολογίστηκε χρησιμοποιώντας το SPSS για να ελέγξει τα μοντέλα μέτρησης. Ο γενικός κανόνας είναι ότι ένα αλφά του Cronbach, του 7 και άνω, είναι καλό. Το αποτέλεσμά μας είναι .869 για όλα τα 84 θέματα. Αυτό έδειξε ότι το μοντέλο μέτρησης εμφάνισε μια αρκετά καλή εφαρμογή με τα δεδομένα που συλλέχθηκαν. Συνοψίζοντας, το μοντέλο μέτρησης έχει επιτύχει πολύ ικανοποιητικά επίπεδα αξιοπιστίας. (βλ. Πίνακας 4.50).

Πίνακας 4.50: Cronbach’s Alpha

<table>
<thead>
<tr>
<th>Reliability Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach’s Alpha</td>
<td>N of Items</td>
</tr>
<tr>
<td>,869</td>
<td>84</td>
</tr>
</tbody>
</table>

4.5 Καινοτομικότητα

Η καινοτομικότητα (innovativeness), όπως είδαμε στο πρώτο κεφάλαιο, είναι για τον Rogers (1983) «σχετική» διάσταση που δείχνει τον βαθμό στον οποίο ένα άτομο...
ανταποκρίνεται πιο γρήγορα στην υιοθέτηση καινούριων ιδεών από ό,τι τα υπόλοιπα μέλη του κοινωνικού συστήματος. Τα μέλη ενός κοινωνικού συστήματος δεν υιοθετούν ταυτόχρονα μια καινοτομία. Η έρευνα έχει δείξει ότι τα ό,τια δεν υιοθετούν νέες τεχνολογίες στην αγορά την ίδια στιγμή.

Η υιοθέτηση νέων τεχνολογιών, όπως είναι για παράδειγμα τα δύο εναλλακτικά καύσιμα που αποτελούν το αντικείμενο μελέτης στην παρούσα διπλωματική, είναι ένα δύσκολο εγχείρημα. Ακόμα και αν οι τεχνολογίες είχαν προφανή πλεονεκτήματα μπορεί να χρειαστούν αρκετά χρόνια για να υιοθετηθούν ευρέως, ειδικά στον χώρο της ναυτιλίας που μιλάμε για τεχνολογίες με τεράστιο κόστος κεφαλαίου.

Η υιοθεσία είναι μια σταδιακή διαδικασία στην οποία το κάθε άτομο προσλαμβάνει διαφορετικά κριτήρια και διαφορετικές προτεραιότητες. Για το λόγο αυτό άλλωστε, διαφέρει και ο ρυθμός με τον οποίο οι καινοτομίες διαχέονται και τα άτομα ταξινομούνται σε κατηγορίες με βάση την προσδιόθεση για την υιοθέτηση νέων τεχνολογιών σε σχέση με άλλους στο ίδιο Κοινωνικό Σύστημα. Η κατανομή των ατόμων σε κατηγορίες είναι σημαντική για την κατανόηση της ανθρώπινης συμπεριφοράς προς την Καινοτομία.

Με στόχο τη σκιαγράφηση της στάσης των συμμετεχόντων προς την Καινοτομικότητα, δόθηκε στους συμμετέχοντες στο τρίτο μέρος του ερωτηματολόγου επτά ζητήματα για να δηλώσουν τη στάση τους προς την Καινοτομία και να υποδείξουν την πρόθεσή τους απέναντι στο LNG και στην ηλεκτρική ενέργεια. Τα αποτελέσματα έδειξαν ότι η συντριπτική πλειοψηφία (94%) είναι περιέργοι για το πως λειτουργούν οι νέες τεχνολογίες, 96% αναζητά πληροφορίες σχετικά με τις νέες τεχνολογίες και 70% των stakeholders θεωρεί τη χρήση των εναλλακτικών καυσίμων μια καλή ιδέα. Ενώ μεγάλη ουδετερότητα υπήρχε στην παραδοχή ότι τα εναλλακτικά καύσιμα είναι αξιόπιστα πιθανόν γιατί στην πράξη θα φανεί το αποτέλεσμα, συνολικά το 52% συμφώνησε με την παραδοχή. Συνοψίζοντας, η συντριπτική πλειοψηφία (82%) έδειξε να είναι θετικοί προς
τα εναλλακτικά καύσιμα, 92% προτίθενται να χρησιμοποιήσουν τα εναλλακτικά καύσιμα στο μέλλον και ένα αρκετά μεγάλο ποσοστό της τάξεως του 72% σκοπεύουν να χρησιμοποιήσουν τα συγκεκριμένα εναλλακτικά καύσιμα στο μέλλον αλλά κάποιοι είναι ουδέτεροι τώρα ως προς τον σχεδιασμό.

Πίνακας 4.51: Η συντριπτική πλειοψηφία αναμένεται να χρησιμοποιήσουν τα συγκεκριμένα εναλλακτικά καύσιμα στο μέλλον
Κεφάλαιο 5ο: ΣΥΜΠΕΡΑΣΜΑΤΑ

5.1 Εμπειρικά Συμπεράσματα

Η συγκεκριμένη διπλωματική εργασία πραγματεύεται τη μετάβαση στα εναλλακτικά καύσιμα στο χώρο της ναυτιλίας με τη χρήση του υγροποιημένου φυσικού αερίου και της ηλεκτρικής ενέργειας. Ειδικότερα, γίνεται μια ερευνητική προσπάθεια να διερευνηθεί η πρόθεση αποδοχής και χρήσης των συγκεκριμένων ναυτιλιακών καυσίμων από τους δυνητικούς χρήστες (stakeholders) στην ελληνική ναυτιλιακή βιομηχανία, στο πλαίσιο της βιώσιμης ανάπτυξης.

Επιπλέον, η παρούσα έρευνα επεδίωξε να διερευνήσει τους παράγοντες που σχετίζονται με την πρόθεση χρήσης των δύο ναυτιλιακών καυσίμων. Συγκεκριμένα, εξετάζονται η Αντιλαμβανόμενη Χρησιμότητα και η Αντιλαμβανόμενη Ευκολία Χρήσης ως παράγοντες τεχνολογικής αποδοχής (ελέγχου) σε σχέση με τα πέντε κατασκευάσματα της θεωρίας διάχυσης της τεχνολογίας και ανεξάρτητες μεταβλητές που αντικατοπτρίζουν τα χαρακτηριστικά του LNG και της ηλεκτρικής ενέργειας.

Τα συμπεράσματα που προκύπτουν από την έρευνα μας είναι ότι τα αποτελέσματα επιβεβαιώσαν το ερευνητικό μοντέλο και τις υποθέσεις. Οι δύο παράγοντες ελέγχου, η Αντιλαμβανόμενη Χρησιμότητα και η Αντιλαμβανόμενη Ευκολία Χρήσης αποτελούν σημαντικούς παράγοντες τεχνολογικής αποδοχής (ελέγχου) σε σχέση με τα πέντε κατασκευάσματα της θεωρίας διάχυσης της τεχνολογίας και ανεξάρτητες μεταβλητές που αντικατοπτρίζουν τα χαρακτηριστικά του LNG και της ηλεκτρικής ενέργειας. Παρατηρήσαμε ότι οι ομαδοποιημένες μεταβλητές είχαν σημαντική συσχέτιση εκτός από μία ανεξάρτητη μεταβλητή, την Δημόσια Εμπιστοσύνη. Απορρέει λοιπόν το συμπέρασμα ότι υπάρχει συσχέτιση μεταξύ των παραγόντων της έρευνας μας. Επίσης, τα αποτελέσματα έδειξαν ότι υπάρχει συσχέτιση μεταξύ της Αντιλαμβανόμενης Χρησιμότητας και της Αντιλαμβανόμενης Ευκολίας Χρήσης του LNG και της ηλεκτρικής ενέργειας που οδηγούν στην αποδοχή τους από τους stakeholders.

Η Αντιλαμβανόμενη Χρησιμότητα έδειξε να σημειώνει την σημαντικότερη θετική συσχέτιση στις Διαδικασίες Ασφάλειας και Ρίσκου, κάτι που υποδεικνύει ότι όσο πιο
ασφαλείς αισθάνονται οι χρήστες με μια τεχνολογία, τόσο πιο διατεθειμένος θα είναι να την χρησιμοποιήσει. Την σημαντικότερη αρνητική συσχέτιση την συναντάμε στις Τεχνολογικές Προκλήσεις δείχνοντας πως οι αντιλαμβανόμενες τεχνολογικές δυσκολίες προσαρμογής στην καινούργια τεχνολογία, θα συμβάλλουν στην αρνητική αντίληψη της χρησιμότητας μιας τεχνολογίας.

Η Αντιλαμβανόμενη Ευκολία Χρήσης αποτελεί επίσης σημαντικό παράγοντα επίδρασης της στάσης ενός ατόμου απέναντι στα δύο εναλλακτικά καύσιμα. Η αντιλαμβανόμενη ευκολία χρήσης των τεχνολογιών LNG και ηλεκτρικής ενέργειας, εδείχε τη σημαντικότερη συσχέτιση στο σχετικό πλεονέκτημα υποδεικνύοντας πως η αναγνώριση του σχετικού πλεονέκτημα της νέας τεχνολογίας οδηγεί πιο εύκολα στην υιοθέτησή της. Επίσης, παρατηρήσαμε πως η Αντιλαμβανόμενη Ευκολία Χρήσης δεν παρουσιάζει καμία αρνητική σχέση.

Από τους παράγοντες διάχυσης γνώσης, η Παρατηρητικότητα, η δυνατότητα δηλαδή δοκιμαστικής χρήσης της καινοτομίας πριν την απόφαση για υιοθέτηση παρουσίασε σημαντική θετική συσχέτιση στην Αντιλαμβανόμενη Χρησιμότητα υποδεικνύοντας πως όταν τα ενδιαφερόμενα μέρη μπορούν να αντληθούν το θετικό αποτέλεσμα από τη χρήση μιας καινοτομίας, τόσο ο ρυθμός υιοθέτησης και διάχυσης αυξάνεται. Η Πολυπλοκότητα αντίθετα, παρουσιάζει αρνητική σημαντική συσχέτιση στην Αντιλαμβανόμενη Χρησιμότητα υποδεικνύοντας πως όσο πιο πολύπλοκη και δυσνόητη είναι η εφαρμογή μιας τεχνολογίας τόσο μικρότερος ο ρυθμός υιοθέτησης.

Η Δοκιμασία, η δυνατότητα δηλαδή δοκιμαστικής χρήσης, παρουσιάζει στατιστικά σημαντική σχέση ως προς την Αντιλαμβανόμενη Ευκολία Χρήσης υποδεικνύοντας πως η δυνατότητα για μερική δοκιμασία πριν την απόφαση για υιοθέτηση θα φέρει μεγαλύτερο ρυθμό υιοθέτησης μιας τεχνολογίας. Το σχετικό Πλεονέκτημα, όπως είδαμε παραπάνω παρουσιάζει επίσης σημαντική θετική συσχέτιση στην Αντιλαμβανόμενη Ευκολία Χρήσης και μάλιστα με την πιο στατιστικά σημαντική συσχέτιση.
Τέλος, η Συμβατότητα είναι ο μοναδικός παράγοντας σε όλο το ερευνητικό μοντέλο που παρουσιάζει στατιστικά σημαντική θετική συσχέτιση και στους δύο παράγοντες ελέγχου υποδεικνύοντας πώς όταν υπάρχει συμβατότητα της καινοτόμου τεχνολογίας με ισχύουσες αξίες και συνήθειες, τότε ο ρυθμός της υιοθέτησης αυξάνεται.

Επιπλέον, κάποια σημαντικά συμπεράσματα που απορρέουν από τους παράγοντες σχετικά με την αποδοχή και χρήση των LNG και της ηλεκτρικής ενέργειας είναι τα ακόλουθα:

Το μεγαλύτερο εμπόδιο σύμφωνα με την συντριπτική πλειοψηφία των συμμετεχόντων για την υιοθέτηση των δύο εναλλακτικών καυσίμων από τους ενδιαφερόμενους φορείς στην Ελλάδα φέρεται να είναι η έλλειψη υποδομών η οποία μπορεί να δημιουργήσει εμπόδια στην αλυσίδα εφοδιασμού εναλλακτικών καυσίμων και στην ενσωμάτωση και υιοθέτηση εν τέλει των δύο τεχνολογιών.

Στην ίδια κλίμακα, τα αποτελέσματα έδειξαν πως υπάρχουν προκλήσεις γύρω από τα δύο εναλλακτικά καύσιμα γιατί διαθέτουν σύνθετο σύστημα ανεφοδιασμού καυσίμων καθώς επίσης υπάρχει και πολυπλοκότητα στο ίδιο το σύστημα που θα πρέπει να ενσωματωθούν και να δουλέψουν καλά, διαφορετικά στοιχεία (εξαρτήματα).

Στο ίδιο πλαίσιο, τονίστηκε ιδιαίτερως πως υπάρχει ανάγκη για συγκεκριμένη τυποποίηση απαιτήσεων για εγκαταστάσεις προμήθειας LNG, για την παροχή ηλεκτρικών υποδομών σε όλους τους τύπους λιμένων και υποδομές για cold ironing σε τερματικούς σταθμούς. Η τυποποίηση είναι μια δύσκολη και απαιτητική διαδικασία. Το πλοίο όμως θα πρέπει να ανεφοδιαστεί με το ίδιο καύσιμο, με τις ίδιες διαδικασίες, με τις ίδιες συνθήκες, με τα ίδια πρότυπα.

Επίσης, ένα εμπόδιο στην ενσωμάτωση της ηλεκτρικής ενέργειας φέρεται να είναι οι ανησυχίες για την Κυψέλη Καυσίμου που βρίσκεται ακόμα σε πρώιμο στάδιο και ένα ακόμη στοιχείο που συγκέντρωσε την ομόφωνη γνώμη όλων είναι ότι θα πρέπει η ηλεκτρική υποδομή να φιλοξενεί όλα τα είδη θυρών.
Τα αποτελέσματα έδειξαν επίσης ότι εκεί που υπήρχε μεγάλη αβεβαιότητα, άγνοια ή διατηρήθηκε σε γενικές γραμμές ουδέτερη στάση ήταν στις Οικονομικές και Χρηματοοικονομικές παραμέτρους καθώς η πλειονότητα των ερωτηθέντων δεν γνωρίζει αν τα εναλλακτικά καύσιμα που αποτελούν αντικείμενο μελέτης ήταν αποτελεσματικά και ευελιξιότερη στις Οικονομικές και Χρηματοοικονομικές παραμέτρους. Υπάρχει η άποψη όμως ότι το κόστος κεφαλαίου (για υποδομές, νέα πλοία) είναι τεράστιες επενδύσεις.

Εκεί που διαπιστώθηκε η μεγάλη ανταπόκριση των stakeholders για το LNG και την ηλεκτρική ενέργεια ως εναλλακτικά καύσιμα πρόωσης των πλοίων είναι στο γεγονός πως μπορούν να αναγνωρίσουν την χρήση τους, ότι είναι ευελιξιότερα και ιδιαίτερα ότι έχουν συγκεντρώσει καλά αποτελέσματα από τη χρήση τους στο εξωτερικό, υπάρχει δηλαδή διάχυση των αποτελεσμάτων των τεχνολογιών.

Επιπρόσθετα, οι συμμετέχοντες υποστήριξαν ότι για να αυξηθεί ο ρυθμός υιοθέτησης τους, ένα μακροπρόθεσμο πλαίσιο πολιτικής θα πρέπει να ευνοεί τα εναλλακτικά καύσιμα και ολοκληρωμένες στρατηγικές απαιτούνται για την εξασφάλιση εναλλακτικών καυσίμων. Ιδιαίτερα ως ενδιαφέρον παρουσιάζει η άποψη της πλειονότητας ότι οι πολιτικές πρέπει να ενθαρρύνουν την περαιτέρω βελτίωση της αποδοτικότητας των καυσίμων.

Τέλος, θα πρέπει να σημειωθεί ότι παρόλο που ο ρόλος των Λιμενικών Αρχών έχει παραγκωνιστεί στη διεθνή βιβλιογραφία, τα αποτελέσματά τους στην αντικρούση των εναλλακτικών καυσίμων, διέπεται και μεγάλη διαφορά στο καθεστώς των Λιμενικών Αρχών, «Διαμέσωσης», και πιστεύουν ότι οι Λιμενικές Αρχές πρέπει να ενθαρρύνουν την παρακολούθηση και αλληλοεπεξεργασία με τις διεθνείς κατευθυντήριες γραμμές των εναλλακτικών καυσίμων.

Μερικά γενικά συμπεράσματα που αφορούν την ανταπόκριση των LNG και της ηλεκτρικής ενέργειας είναι ότι η νομοθεσία που αποβλέπει αυστηρότερα όρια θείου, είναι η κινητήριος δύναμη για την προώθηση του LNG και της ηλεκτρικής ενέργειας.
Τα εναλλακτικά καύσιμα αναδύονται μέσα από διεθνείς περιβαλλοντικές πίεσεις και είναι αποτέλεσμα πολιτικών αποφάσεων.

Επίσης τα κανάλια επικοινωνίας που αναλύσαμε στη Θεωρία Διάχυσης της Τεχνολογίας είναι πολύ σημαντικά όπως αποδεικνύεται, για την διάχυση των δύο συγκεκριμένων εναλλακτικών καυσίμων. Το LNG, όπως και η ηλεκτρική ενέργεια με βραδύτερο όμως ρυθμό, αποκτούν ωλοένα και μεγαλύτερη δημοτικότητα ως ναυτιλιακά καύσιμα. Όπως διαπιστώνεται, σημαντικό ρόλο παίζουν τα ευρωπαϊκά projects που τρέχουν με σκοπό την υιοθέτηση τους, η μαζική έκδοση επιστημονικών μελετών, οι δημόσιες διαδικασίες διαβουλεύσεων αλλά και η συμβολή του τύπου που δημοσιεύει σε πολύ τακτικό χρονικό διάστημα άρθρα που ενημερώνουν για τις εξελίξεις γύρω από τις συγκεκριμένες τεχνολογίες.

Η Ελλάδα είναι έτοιμη να εισέλθει στην εποχή του LNG και της ηλεκτρικής ενέργειας –ή ακόμα καλύτερα- βρίσκεται ήδη στο στάδιο της μετάβασης σε μια βιώσιμη ναυτιλία. Η ζήτηση τους ως εναλλακτικά καύσιμα αναμένεται να αυξηθεί τα επόμενα χρόνια. Υπάρχει αβεβαιότητα σχετικά με το ρυθμό και την κλίμακα της αύξησης της ζήτησης αλλά η Ελλάδα προχωρά ομοιόμορφα σε όλους τους τύπους πλοίων. Η ηλεκτρική ενέργεια δεν θεωρείται προς το παρόν ανταγωνιστική αλλά μπορεί να λειτουργήσουν συμπληρωματικά. Επίσης, θα μπορούσαν να εξυπηρετήσουν κι άλλες συμβατικές χρήσεις εκτός από την χρήση τους ως ναυτιλιακά καύσιμα και να δημιουργήσουν νέες αγορές.

Η ευρωπαϊκή ναυτιλιακή πολιτική υλοποιεί προωθητικά προγράμματα και για να αναπτύξει η χρήση τους χρειάζονται συνέργειες από τους stakeholders για να αντιμετωπιστούν κάποιες προκλήσεις που είδαμε καθώς και επενδύσεις για την αλυσίδα εφοδιασμού LNG και ηλεκτρικής ενέργειας.
Είναι γενικά παραδεκτό πως σήμερα, το παγκόσμιο ενδιαφέρον της ναυτιλιακής κοινότητας έχει στρέψει την προσοχή του στην χρήση του φυσικού αερίου ως ναυτιλιακό καύσιμο και ακολουθεί η ηλεκτρική ενέργεια. Όπως μας έδειξαν τα αποτελέσματα, οι stakeholders σκοπεύουν να χρησιμοποιήσουν το LNG και την ηλεκτρική ενέργεια στο μέλλον (είναι θετικοί η συντριπτική πλειοψηφία), απλά αυτή τη στιγμή δεν προχωρούν στον άμεσο σχεδιασμό.

Απομένει στην Ελλάδα να εκμεταλλευτεί την ηγετική της θέση στη ναυτιλία ώστε να αποτελέσει σύντομα διεθνή βάση ανεφοδιασμών πλοίων τροφοδοτούμενα με LNG αλλά και ηλεκτροδότησης πλοίων στην Ανατολική Μεσόγειο καθώς και να αποτελέσει πρότυπο για την συμμόρφωση με τους στόχους της βιώσιμης ναυτιλίας.

5.2 Μελλοντική Έρευνα

Η παρούσα έρευνα μπορεί να αποτελέσει τη βάση για περαιτέρω έρευνες και ανάλυση στον ναυτιλιακό τομέα. Θα είναι αρκετά ενδιαφέρον η συγκεκριμένη έρευνα να συνεχιστεί σε ένα επόμενο επίπεδο και να αξιολογηθεί κατά πόσον οι παράγοντες εκδηλώνονται με διαφορετικό τρόπο στα διαφορετικά στάδια της διαδικασίας της καινοτομίας.

Επίσης, η συγκεκριμένη έρευνα θα μπορούσε να χρησιμοποιηθεί από τους φορείς χάραξης πολιτικής για την κατανόηση των σχετικών παραγόντων που οδηγούν στην υιοθέτηση των LNG και ηλεκτρικής ενέργειας και με αυτόν τον τρόπο τα πιθανά "εμπόδια" ή αβεβαιοτήτες σχετικά με τη χρήση των δύο εναλλακτικών καυσίμων να αναδειχθούν, να αντιμετωπιστούν και να γίνει προσπάθεια να ξεπεραστούν δίνοντας ωθήση στον ρυθμό υιοθέτησης τους.

Επιπλέον, θα μπορούσε να χρησιμοποιηθεί το προτεινόμενο υβριδικό ερευνητικό μοντέλο σε αντίστοιχες μελέτες.

5.3 Συνεισφορά
Συγκεκριμένα, ο ερευνητικός στόχος ήταν να αναπτυχθεί ένα νέο μοντέλο που θα αξιολογήσει τις συμπεριφορικές προθέσεις των stakeholders για τη χρήση εναλλακτικών καυσίμων, του LNG και της ηλεκτρικής ενέργειας.

Αξίζει να επισημανθεί ότι δεν υπάρχει έγγραφο που να έχει βρεθεί στην ανασκόπηση σχετικά με την αποδοχή αυτών των εναλλακτικών καυσίμων καθώς και καμία μελέτη με αυτά τα μοντέλα που να ερευνούν τις συγκεκριμένες τεχνολογίες. Ωστόσο, δεν υπάρχει εγγράφο που να έχει βρεθεί στην ανασκόπηση σχετικά με την αποδοχή αυτών των εναλλακτικών καυσίμων καθώς και καμία μελέτη με αυτά τα μοντέλα που να ερευνούν τις συγκεκριμένες τεχνολογίες. Οπότε η μεγαλύτερη συνεισφορά της συγκεκριμένης έρευνας έγινε στο ότι πρόκειται για την πρώτη εμπεριστατωμένη έρευνα συμπεριφορικών προθέσεων.

Επίσης, το προτεινόμενο υβριδικό μοντέλο μπορεί να αποτελέσει την βάση για την ανάπτυξη μελλοντικών ερευνητικών προτάσεων.

Η συγκεκριμένη έρευνα ενημερώνει τους φορείς χάραξης λήψης αποφάσεων στην Ελλάδα προς την κατεύθυνση της βιώσιμης ναυτιλίας.
ΒΙΒΛΙΟΓΡΑΦΙΑ

- Danish, Maritime, Authority, 2012. North European LNG Infrastructure Project-A feasibility study for an LNG filling station infrastructure and test of recommendations, The Danish Maritime Authority, co-financed by the European Union, Trans-European Transport Network

• Davis, F. D., 1986. A technology acceptance model for empirically testing new end-user information systems: Theory and results, Massachussets: Massachussets Institute of Technology.

• DNV GL., 2017. LNGi Status Update, Comprehensive Insights on Worldwide LNG Bunkering Availability and Market Data on LNG as Fuel for Ships

• DNV-GL, 2018. LNG regulatory update, “Best fuel of the future”, conference & study tour, updated 1 April

• Energy, Information, Administration, (EIA), 2015. Marine Fuel Choice for Ocean- Going Vessels within Emissions Control Areas, 3.2.2 Strategy B-LNG- fueled vessels, 26

• European, Union, Law, 2014. ΟΔΗΓΙΑ 2014/94/ΕΕ του Ευρωπαϊκού Κοινοβουλίου και του Συμβουλίου της 22ας Οκτωβρίου 2014 για την ανάπτυξη υποδομών εναλλακτικών καυσίμων

• Faber, J., Nelissen D., Ahdour S., et al., 2015. Study on the Completion of an EU Framework on LNG-fuelled Ships and its Relevant Fuel Provision Infrastructure - Analysis of the LNG market development in the EU, European Commission

• Fagerberg, J., Martin, B.R., et al., 2013. Innovation Studies - Evolution and Future Challenges, 1

• Ghaith, Al, Waleed, 2015. Applying the technology acceptance model to understand social networking sites (SNS) usage: impact of perceived social capital, International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015, p. 107

• Hair, J. F., Money, A.H., Mike, Page, Samouel, Ph., 2007. Research Methods for Business, John Wiley & Sons Ltd, West Sussex, England

• Karahanna, E., Straub, D., Chervany, N.L., 1999. Information Technology Adoption Across Time: A Cross-Sectional Comparison of Pre-Adoption and Post-Adoption Beliefs

- 127 -
In Information and Communication Technologies in Tourism 2000 (pp. 396-407). Vienna: Springer.

- Venkatesh, V., Davis F.D., 1996. A model of the antecedents of perceived ease of use: Development and test, Decision Sciences; Volume 27, Number 3.

- Verbeek R., G. Kodijk et al., 2011. Environmental and Economic aspects of using LNG as a fuel for shipping in the Netherlands, TNO report

- Wang, S., Notteboom, T., 2013. LNG as a ship fuel: perspectives and challenges, ITMMA, University of Antwerp, Belgium, edition 60: November, 16

Appendix I

Green Shipping on Board:

Acceptance, Diffusion & Adoption of LNG & Electricity as Alternative Fuels in Greece

O. Sideri (student) 1, N. Nikitakos (supervisor) 2 D. Papachristos 3

1 Dpt. of Shipping trade & Transport and Dpt of Industrial Design and Production Engineering, “MSc in New Technologies in Shipping & Transport”, University of Aegean and University of West Attica, Greece, E-mail: (olga_sid_@hotmail.com)

2 Dpt. of Shipping trade & Transport and Dpt of Industrial Design and Production Engineering, “MSc in New Technologies in Shipping & Transport”, University of Aegean and University of West Attica, Greece, E-mail: (nnik@aegean.gr)

Introduction

Today, the use of alternative fuels is considered to be a key area of sustainable technological growth in maritime transport. Several procedures and solutions are being evaluated to protect the environment and comply with associated legislation by IMO. Greece is ready to enter the era of Liquefied Natural Gas and Electricity as marine fuels, as Eastern Mediterranean projects are taking steps towards the adoption of these alternative fuels. Both technologies are already in line with the stringent ship emission regulations on the horizon.

The goal of this study is to explore the intention to accept and use LNG and electricity as alternative fuels by stakeholders in Greece. The objective of this study is to identify, investigate and evaluate factors that influence and lead to the acceptance and use of liquefied natural gas (LNG) and electricity as alternative fuels.
Limitations

These alternative fuels are at an early stage of development. In that sense, we can not directly measure consumer attitudes. However, it is possible to measure the behavior of potential users who will adopt such technologies in order to predict the actual use.

Theoretical Background

Technology Acceptance Model (TAM): TAM is one of the most influential theories and discussed in predicting and explaining the use of behavioral technology by end-users. The Technology Acceptance Model is valid because it is widely used to evaluate why people are applying or refusing to apply technology.

Innovation Diffusion Theory (IDT): IDT is the most well-known theory about technical innovation and has been widely applied in various fields. The IDT Theory attempts to explain the innovation decision-making process by determining the adoption rate variables.

Methodology Research

Measures

The questionnaire consisted of three parts. The first part of the questionnaire was to gather basic demographic information from the “users”, such as gender, level of education, maritime sector, etc. Part 2 of the questionnaire was based on the constructs of TAM and IDT models as well as the most important factors. The constructs, include 16 items with 77 issues. The questions used in the questionnaire to operationalize the TAM and IDT constructs included in the research model have been adjusted from the literature. Part 3 of the questionnaire consisted of collecting the behavior of interviewees with regard to innovation, including 7 issues. The questionnaire was based on 5-point Likert-type scale and ranging from “Strongly Agree” (1) to “Strongly Disagree” (5) containing almost 5 items for the above.

Research model and hypotheses

This research proposes an embedded model based on IDT and TAM models to benefit from these two theoretical frameworks. There is no specific relationship between the dissemination of the Innovation view and the TAM, but both share a
number of key constructs. For example, the relative advantage construct in IDT was found to be similar to the concept of PU in TAM, and the complexity construct in IDT captures the PEU in the technology acceptance model.

The two core TAM factors PU and PEOU, five innovation factors (relative advantage, compatibility, complexity, trialability and observability) and multiple variables affecting marine fuel decision (covering economic, technical, environmental and social aspects) are included as key determinants in our integrated new technology adoption framework (see Fig.1). The integrated model argues that the five innovative characteristics and the most essential influencing factors of LNG and Electricity exert an important effect on PU, PEU and intention to use these alternative fuels.

This model will reveal how these various factors influence the acceptance and adoption of LNG and Electricity technology in the maritime industry. The validity and applicability of the proposed model will be tested on the basis of the following hypotheses.

Figure 1. Proposed research model
Overall, 25 out of 30 hypotheses were accepted by the data.

Table 1: Hypotheses testing results

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Path</th>
<th>Direction</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1-1</td>
<td>RAD → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H1-2</td>
<td>RAD → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H2-1</td>
<td>CPT → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H2-2</td>
<td>CPT → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H3-1</td>
<td>CPX → PU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H3-2</td>
<td>CPX → PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H4-1</td>
<td>OB → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H4-2</td>
<td>OB → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H5-1</td>
<td>TR → PU</td>
<td>Positive</td>
<td>Rejected</td>
</tr>
<tr>
<td>H5-2</td>
<td>TR → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H6-1</td>
<td>SPR → PU</td>
<td>Negative</td>
<td>Rejected</td>
</tr>
<tr>
<td>H6-2</td>
<td>SPR → PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H7-1</td>
<td>GP → PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H7-2</td>
<td>GP → PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H8-1</td>
<td>INF → PU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H8-2</td>
<td>INF → PEU</td>
<td>Negative</td>
<td>Rejected</td>
</tr>
<tr>
<td>H9-1</td>
<td>B&E → PU</td>
<td>Positive</td>
<td>Rejected</td>
</tr>
<tr>
<td>H9-2</td>
<td>B&E → PEU</td>
<td>Positive</td>
<td>Rejected</td>
</tr>
</tbody>
</table>
Reliability

Reliability is a key element in the evaluation of the measuring instrument. Reliability concerns an instrument’s ability to consistently measure. Cronbach’s alpha, the most widely used objective measure of reliability, was computed using SPSS to test the measurement models. The general rule of thumb is that a Cronbach's alpha of .7 and above is good. Our result is .869 for all the 84 issues. This showed that the measurement model exhibited a fairly excellent fit with the collected data. To sum up, the measurement model have achieved very satisfactory levels of reliability, convergent validity and discriminatory validity (see Table 2).

Table 2: Cronbach’s Alpha

<table>
<thead>
<tr>
<th>H10-1</th>
<th>E&F \rightarrow PU</th>
<th>Negative</th>
<th>Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10-2</td>
<td>E&F \rightarrow PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H11-1</td>
<td>PR \rightarrow PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H11-2</td>
<td>PR \rightarrow PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H12-1</td>
<td>TC \rightarrow PU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H12-2</td>
<td>TC \rightarrow PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H13-1</td>
<td>AVL \rightarrow PU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H13-2</td>
<td>AVL \rightarrow PEU</td>
<td>Negative</td>
<td>Accepted</td>
</tr>
<tr>
<td>H14-1</td>
<td>PT \rightarrow PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H14-2</td>
<td>PT \rightarrow PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H15-1</td>
<td>PU \rightarrow PEU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
<tr>
<td>H15-2</td>
<td>PEU \rightarrow PU</td>
<td>Positive</td>
<td>Accepted</td>
</tr>
</tbody>
</table>
Results and Discussion

PU was significantly influenced by three exogenous factors: OB (,547 P <0.001), CPT (,456 p<0.001) and CPX (-,569 P<0.001) which support hypotheses H4-1 H2-1 and H3-1.

Observability has a positive impact because participants feel that Alternative Fuels could bring some benefits to them and that they have many opportunities to discuss the use of Alternative Fuels as they have seen the use of Alternative Fuels or have seen their coworkers use Alternative Fuels.

On the other hand, Complexity has a negative impact because the results show that alternative fuels have a complex refueling system, their functions are complex and diverse components within the system itself, resulting in complexity. The efficiency of alternative fuels is still at a low level and the fragmented decision-making landscape across the globe / national does not contribute to the negative impact of alternative fuels.

PU (.456 p<0.001) and PEU (.476 p<0.001) was found to be significantly influenced by compatibility. Compatibility has a positive impact as participants agree that using Alternative Fuels would be compatible with most aspects of their maritime activities. In addition, it is crucial that most of the participants strongly agree that these alternative fuels are interoperable with other existing vessel systems.

SPR, (738 P<0.01) and B&E, (-4,00, P<0.01) also have a significant influence on PU. However, the effect was in contrast to what was hypothesized (H6-1 and H9-1) (rejected).
Safety procedures and Risk have had a negative impact on the PU, as failure to address safety issues in the early stages of development could have an impact on the future development of these alternative fuels. In addition, there are concerns about the extremely low temperatures of LNG fuel, and most of the participants agree that using alternative fuels poses a potential risk. Nonetheless, most participants agree that they will feel safe on ships fueled by these alternative fuels and that a hazard recognition study is needed.

Similarly, the results show a negative impact of Bunkering and Electrification on PU, as the lack of guidelines for bunkering procedures is a barrier and almost all participants strongly agree that an international standard for bunkering LNG should be established. In addition, the advancement of battery technology will harbor future ship applications.

The results showed that PU significantly influenced TC (-846, P<0.001) and AVL (-738, P<0.001) supporting hypotheses H12-1 and H13-1, respectively, with the highest correlation.

Technological concerns have a negative impact on PU, because there are concerns about space limitations (larger tanks) for LNG, about the issues of ship design for current vessels, and about Fuel Cell Technology for ships that are still in their infancy.

Availability also has a negative impact on the PU. The issue if there is a limited production potential of these alternative fuels and limited availability (chicken-and-egg problem) are worrying.

Furthermore, PU was found to be significantly influenced by INF (-.686, P<0.001) and E&F (-.404, P<0.001) concerns which support hypotheses H8-1 and H10-1.

With regard to the issue of Infrastructure, the majority of participants strongly agree that lack of infrastructure can create barriers to the supply chain of alternative fuels. Moreover, the results show that there is a need for a specific standardization of requirements for LNG supply facilities and for infrastructure for cold ironing at marine terminals.

Results for Economic and Financial Concerns show that the majority of respondents agree that capital costs (infrastructure, new vessels) are huge investments and that the initial investment required (propulsion systems, fuel handling systems) is enormous.
PEU was found to be significantly influenced by three exogenous factors: RAD (.613, P<0.001), TR (485, P<0.001), and CPT (.476, P <0.001) as we see above, supporting hypotheses H1-2, H5-2, and H2-2, respectively. All of them were accepted.

Specifically, the **Relative Advantage** of alternative fuels is that are sustainable (reduce emissions) and reliable, appropriate for upcoming legislation (IMO 2020), deliver environmental benefits and increase energy safety.

Trialability has a significant positive impact on PEU. Alternative fuels have accrued some good test results abroad and it is easy for them to find information on the use of alternative fuels.

Furthermore, PEU was found to be significantly influenced by GP (.381, P <0.001) and PR (480, P <0.001) supporting hypotheses H7-2 and H11-2.

As **Government Policy** is concerned, the majority of participants strongly agree that policies need to encourage more progress in fuel efficiency and a long-term policy framework should favor Alternative Fuels.

While **Port Regulations** are restricted in bibliography, the results show that they have a significant impact on PEU as a mediator as ports can lay down rules, address specific operational aspects and, as almost all participants agree, port services should be flexible to comply with international alternative fuel guidelines.

The results show that there is no substantial impact on public trust issues.

Contribution

It is worth pointing out that there is no paper that has been found within the review about the acceptance of these alternative fuels as well as no study with these models together about marine technologies.

The proposed unified model can be a basis for developing future research propositions.

This research is the first comprehensive study taking into consideration the behavioral intention about the acceptance and behavioral intention to use LNG and electricity towards sustainable shipping. Furthermore, the contribution of the proposed model, is to understand the factors influencing the acceptance of LNG and electricity in order to
improve the qualitative understanding of the system. This framework aims to inform the policy making process into a desired direction which is sustainable shipping.

Concluding Remarks

- Ultimately, the results have confirmed the research model and hypotheses.
- In addition, these findings confirmed existing research, which, as originally proposed by Davis et al. (1989), found a strong association between PEU and PU. The Perceived Usefulness and Perceived Ease of Use are considered significant factors in determining the acceptance of LNG and Electricity as alternative fuels in Greece.
- Perceived Usage has been shown to have the most significant positive association in safety and risk procedures suggesting that the safer users feel the more likely they are to use technology.
- The most significant negative correlation can be seen in the Technical Challenges demonstrating how perceived technical challenges in adapting to new technologies can lead to a negative perception of the usefulness of the technology.
- Perceived ease of use has shown the most significant correlation to the relative advantage, suggesting that awareness of the relative advantage of new technology leads to faster adoption. We have observed that there is no negative relationship between Perceived Ease of Use.
- The biggest barrier, according to the vast majority of participants, to the adoption of the two alternative fuels by the Greek stakeholders is the lack of infrastructure.
- Concerns about Fuel Cell are also said to be an obstacle to the incorporation of electricity at an early stage.
- Greece is on the verge of entering the age of LNG and electricity—or better yet—is already in the process of moving towards sustainable shipping.

1. Acknowledgements

This research project was undertaken as part of the Postgraduate (MSc) Program of Studies, "New Technologies in Shipping & Transport" of the Department of Shipping trade & Transport and Department of Industrial Design and Production Engineering, University of Aegean and University of West Attica.
Appendix II

Green Shipping on Board: Acceptance, Diffusion and Adoption of LNG and Electricity as Alternative Fuels in Greece

Dear Respondent,

I would like to invite you to participate in my research study "Green Shipping on Board: Acceptance, Diffusion and Adoption of LNG and Electricity as Alternative Fuels in Greece".

The following questionnaire was developed as part of the final degree of Master in "New Technologies in Shipping and Transportation". The purpose of the research is to investigate and evaluate the major factors that affect and lead to the adoption and use of these alternative fuels. Qualitative and quantitative research will be conducted with the collection of data from stakeholders in the Greek shipping industry by conducting a multi-criteria decision analysis. The thesis aims to inform the policy making process into a desired direction which is sustainable shipping.

Survey Guidance
I hope that you will take the time to complete the survey as it will contribute positively towards the quality of the thesis. The survey will require 15 minutes of your time.
Please complete the questionnaire until 31 October 2019 and according to your own experience.
Thank you for your support in this research.

Anonymity
Your participation in this research process is completely voluntary. Completing the questionnaire is anonymous and your participation is valuable. Data from this research would be used for academic purposes only.

I look forward to receiving your reply.

Sincerely,
Olga Sideri
Part 1. Personal Information (Demography)

1. Gender *
 - Male
 - Female

2. Age *
 - > 30
 - 31-40
 - 41-50
 - 51-60
 - 61-70
 - 71 or older

3. Level of Education *
 - High School
 - Diploma
 - Bachelor Degree
 - Master Degree
 - PHD Degree
 - Other
4. In which Maritime Industry sector do you belong? *

- Classification Societies
- Vessel Operations (Port Authority, Cruise industry, merchant shipping)
- Ship Owners
- shipbuilding (Marine equipment, construction, shipbuilding)
- Shipping Companies
- Marine Resources (Offshore Oil & gas), Renewable Energy
- Other Marine related activities (Maritime Tourism, Marine Services, R & D, Marine IT, Submarine telecoms)
- None of the above

Part. 2

Below is a list of statements concerning LNG and Electricity as alternative fuels for marine propulsion in Greece. Please rate each statement on a scale from 1 (Strongly Agree) to 5 (Strongly Disagree). LNG and Electricity will be referred as Alternative Fuels.
5. Relative Advantage *

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Fuels are sustainable (reduce emissions)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels are suitable for upcoming legislation (IMO 2020)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels offer environmental benefits</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>It is asserted that alternative fuels are reliable</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels increases energy security</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
6. Trialability *

<table>
<thead>
<tr>
<th>A trial would convince me that using Alternative Fuels are better than other</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither Agree nor Disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is easy for me to find the usage information of Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I can try any kind of function before using Alternative Fuels officially</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I can quit it if I am not satisfied after trying Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels have accumulated some good testing results</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
7. Observability *

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither Agree nor Disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I could have many opportunities to discuss the usage of Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I have seen the application of Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I have seen my coworkers using Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I can easily feel that Alternative Fuels could bring me some benefits</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I have seen the demonstrations of Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
8. Compatibility

<table>
<thead>
<tr>
<th>Using Alternative Fuels would be compatible with the most aspects of my Maritime Activities</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither Agree nor Disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Fuels would be compatible with my Maritime needs</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>LGN is compatible with other systems/services I use</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Electricity is compatible with other systems/services I use</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels are interoperable with other systems of existing vessels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
9. Complexity *

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither Agree nor Disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can understand the functions of Alternative Fuels and think that they are not complex</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels have refuel complexity</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Diverse components within the system itself, results complexity</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I think that fragmented decision-making landscape across global/national does not help in implementation of Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Efficiency of Alternative Fuels is still at a low level</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
10. Safety Procedures & Risk Considerations *

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither Agree nor Disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A failure to properly address safety issues in the earliest stages of development could influence the future development of these Alternative fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Hazard identification study is necessary</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I think using Alternative fuels has potential risk</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Concerns about extremely low temperatures of the LNG fuel</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I will feel safe to be on vessels fueled by alternative fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
11. Government Policy *

<table>
<thead>
<tr>
<th>Integration and adaptation of the international legal framework for Alternative Fuels is necessary</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A long-term policy framework should favour Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated strategies are required to ensure Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Regulatory timeline towards 2030 is needed</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policies need to encourage the further improvement of the fuel efficiency</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12. Infrastructure *

<table>
<thead>
<tr>
<th>Lack of Infrastructure can create barriers in the supply chain of Alternative fuels</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

| I think consumers would be able to easily refuel their vehicles | ○ | ○ | ○ | ○ | ○ |
| | ○ | ○ | ○ | ○ | ○ |

| A common standardization of the requirements for LNG supply infrastructure is needed | ○ | ○ | ○ | ○ | ○ |
| | ○ | ○ | ○ | ○ | ○ |

| Electrical infrastructure needs to accommodate all kinds of ports | ○ | ○ | ○ | ○ | ○ |
| | ○ | ○ | ○ | ○ | ○ |

<p>| The infrastructure for cold ironing at marine terminals is wise | ○ | ○ | ○ | ○ | ○ |
| | ○ | ○ | ○ | ○ | ○ |</p>
<table>
<thead>
<tr>
<th>Lack of guidelines for procedures for bunkering is a barrier</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I think that an international standard for LNG bunkering should not be established</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Developing battery technology will harbor ship applications potential</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Statement</td>
<td>Strongly Agree 1</td>
<td>Agree 2</td>
<td>Neither agree nor disagree 3</td>
<td>Disagree 4</td>
<td>Strongly Disagree 5</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---------</td>
<td>------------------------------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Alternative Fuels lead to financial loss for me</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels creates a positive budget</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels have higher operating costs</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I think that capital costs (infrastructure, new vessels) is a huge investment</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>The initial investment required (propulsion systems, fuel handling systems) is enormous</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
Port Regulations *

<table>
<thead>
<tr>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports can set rules, addressing specific operational aspects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Authorities should support the deployment of Alternative Fuels for shipping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Services should be flexible to interact with international guidelines of Alternative fuels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative fuels should be incorporated by the Port Authorities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. Technology Concerns *

<table>
<thead>
<tr>
<th>A platform for addressing technical issues is still in its infancy</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerns about space limitations (larger tanks)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Concerns about ship design issues to the existing vessels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Fuel cell Technology for ships is still in its infancy</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels might not perform well and create problems</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I am worried about technological system failures</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
17. Availability *

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a limited production capacity of these Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I think Alternative Fuels will have poor stability</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Limited Availability (chicken-and-egg problem) is worrying</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>If Alternative Fuels become so attractive, will not be available in sufficient quality</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>There are gaps regarding quality standards for Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
18. Public Trust *

<table>
<thead>
<tr>
<th>Concerns about possible resistance to infrastructure</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative fuels perform well relative to sustainability</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>There is a great deal of uncertainty with the use of alternative fuels</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I am against using alternative fuels</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall, I can trust Alternative Fuels</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Statement</td>
<td>Strongly Agree 1</td>
<td>Agree 2</td>
<td>Neither agree nor disagree 3</td>
<td>Disagree 4</td>
<td>Strongly Disagree 5</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Using Alternative Fuels would enhance company's effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The development of Alternative Fuels is a waste of resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Alternative Fuels will improve company's performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Alternative Fuels will increase company's productivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall, I find the technology transition to Alternative Fuels useful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. Perceived Ease of Use *

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning to operate/work vessels fuelled with Alternative Fuels will be easy</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I think becoming skillful at using Alternative Fuels is easy</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Interacting with Alternative Fuels would not require a lot of mental effort</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Overall, I find it useful to adopt Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
Part 3.

21. Innovativeness *

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Agree 1</th>
<th>Agree 2</th>
<th>Neither agree nor disagree 3</th>
<th>Disagree 4</th>
<th>Strongly Disagree 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am curious about how new technologies work</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I often seek out information about new technologies</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I am positive toward Alternative Fuels</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alternative Fuels are dependable</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Using Alternative Fuels is a good idea</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I intend to use Alternative Fuels in the future</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I plan to use Alternative fuels in the future</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>